Выпечка

Влияние кмафанм на организм человека. Опасный фактор – кмафанм. Определение общего числа бактерий

Влияние кмафанм на организм человека. Опасный фактор – кмафанм. Определение общего числа бактерий

Изобретение относится к микробиологии, а именно к определению контаминации пищевых продуктов. Способ включает приготовление мясо-пептонного агара, разлив его в чашки Петри, отбор проб с пищевых продуктов, приготовление взвеси из навески пищевых продуктов, приготовление десятичных разведений исследуемой взвеси и размещение десятичных разведений исследуемой взвеси в чашки Петри, культивирование и подсчет числа колоний по формуле: x=a n ×10, n - степень разведения. Причем для приготовления десятичных разведений исследуемой взвеси используют 0,6-0,8%-ный раствор мясо-пептонного агара, при этом десятичные разведения исследуемой взвеси размещают на мембранные фильтры, находящиеся на поверхности мясо-пептонного агара в чашке Петри. Способ является оригинальным в решении, простым в осуществлении, информативным, дает статистически достоверные результаты; позволяет значительно сократить расход питательных сред, стерильной бактериологической посуды и времени проведения анализа; позволяет дать реальную количественную оценку содержания микроорганизмов, дающих сливной рост и образующих очень мелкие колонии, а также позволяет изучать внутрипопуляционные процессы с использованием световой микроскопии. 1 ил., 1 табл.

Изобретение относится к области ветеринарно-санитарной экспертизы, санитарии и микробиологии, а именно к определению контаминации пищевых продуктов и санитарно-гигиенического состояния объектов внешней среды.

Наиболее близким является способ определения количества микроорганизмов в колбасных изделиях и продуктах из мяса в воде. Известный способ определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов в 1 г продукта заключается в следующем: приготовление раствора для разведения и мясо-пептонного агара для посева; проведение анализа; учет результатов. 1. Недостатком существующего способа является то, что используемый раствор натрия хлорида (0,85%-ный) для разведения проб незабуферен и изотоничен только по отношению к клеткам млекопитающих, а также для проведения анализов используется большое количество питательной среды, бактериологической посуды и затрат рабочего времени. Кроме того, этот метод не позволяет дать реальную количественную оценку содержания микроорганизмов, дающих сливной рост и образующих очень мелкие (росинчатые) колонии (Методы общей бактериологии. Под ред. Ф.Герхарда и др. М.: «Мир», 1983, с.442-512).

Задачей изобретения является снижение количества используемой питательной среды, бактериологической посуды и затрат рабочего времени путем использования физиологического раствора полужидкого МПА вместо 0,85%-ного раствора натрия хлорида с последующим высевом капли разведенной испытуемой взвеси на поверхность мембранного фильтра.

Применение данного способа основано на том, что в качестве физиологического раствора для разведения используется физиологический раствор полужидкого мясо-пептонного агара (0,6-0,8%), состоящий из 1 дм 3 дистиллированной воды, 10 г пептона, 5 г натрия хлорида, 0,3 г безводного КН 2 РО 4 , 0,6 г безводного NaH 2 РО 4 и 0,6-0,8 г агар-агара; рН среды 7,0-7,2, капли которого наносятся на поверхность мембранных фильтров.

Использование в качестве раствора для разведения (0,6-0,8% мясо-пептонного полужидкого агара) с последующим высевом капли разведенной испытуемой взвеси на мембранный фильтр является оригинальным в решении, простым в осуществлении, информативным, дает статистически достоверные результаты; позволяет значительно сократить расход питательных сред, стерильной бактериологической посуды и времени проведения анализа; позволяет дать реальную количественную оценку содержания микроорганизмов, дающих сливной рост и образующих очень мелкие (росинчатые) колонии, а также позволяет изучать внутрипопуляционные процессы с использованием световой микроскопии.

Для проведения анализа отбирают пробы пищевых продуктов согласно действующим нормативным документам (ГОСТ 18963-73. Вода питьевая. Методы санитарно-бактериологического анализа. М., 1986; ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982; ГОСТ 7702.2.1-95. Мясо птицы, субпродукты и полуфабрикаты птичьи. М., 1994).

Для приготовления взвеси навеску пищевых продуктов помещают в стерильную колбу (стакан) гомогенизатора и добавляют 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводят в электрическом смесителе. Вначале измельчают материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Допускается при отсутствии гомогенизатора приготовление испытуемой взвеси в стерильной фарфоровой ступке путем растирания 20 г продукта с 2-3 г стерильного песка, постепенно приливая 80 см стерильного физиологического раствора. Для посевов на питательные среды стерильной градуированной пипеткой отбирают взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта.

Мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см) и после того, как агар остынет, на его поверхности стерильным пинцетом размещают 5-6 мембранных фильтров. На схеме представлены основные этапы определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов предлагаемым способом.

0,6-0,8%-ный физиологический раствор полужидкого МПА разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологическом растворе полужидкого МПА готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 полужидкого агара вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. 0,1 мл (1 каплю) разведенной культуры наносят на мембранный фильтр, расположенный на МПА в чашке. В одну чашку можно поместить по 5-6 капель агара с различными разведениями культуры. Капли агара с разведенной культурой застывают через 10-15 мин. После этого чашки Петри культивируют в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводят подсчет колоний в каплях агара.

Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножают на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения.

Для количественной оценки содержания микроорганизмов, дающих сливной рост и образующих очень мелкие (росинчатые) колонии, а также для изучения внутрипопуляционных процессов с использованием световой микроскопии выросшие на мембранных фильтрах колонии фиксируют в парах 25%-ного глутарового альдегида 30-40 мин. Затем мембранный фильтр накладывают на поверхность предметного стекла и наносят на него несколько капель пропиленоксида. Мембранный фильтр становится прозрачным и в микроскоп или лупу можно считать даже очень мелкие (росинчатые) колонии и при необходимости проводить микрофотосъемку.

Способ поясняется на следующих конкретных примерах осуществления (см таблицу).

Условные обозначения: способ 1 - ближайший аналог

способ 2 - предлагаемый

Пример 1. Определение количества мезофильных аэробных и факультативно-анаэробных микроорганизмов в вареной колбасе. Определение количества мезофильных аэробных и факультативно-анаэробных микроорганизмов проводили двумя способами: способ 1 (прототип) - Для проведения анализа мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см). Отбор проб пищевых продуктов проводили согласно действующим нормативным документам (ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982). Для приготовления взвеси навеску пищевых продуктов помещали в стерильную колбу (стакан) гомогенизатора и добавляли 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводили в электрическом смесителе. Вначале измельчали материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Для посевов на питательные среды стерильной градуированной пипеткой отбирали взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта. Готовили 3 разведения исследуемой взвеси в физиологическом растворе натрия хлорида: физиологический раствор натрия хлорида разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологическом растворе натрия хлорида готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 натрия хлорида вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. и затем из каждого разведения по 0,1 мл наносили в чашку Петри (всего 3 чашки). После этого чашки Петри культивировали в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводили подсчет колоний в каплях агара. Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножали на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения,

Способ 2 (предлагаемый) включает приготовление раствора для разведения (0,6-0,8%-ный физиологический раствор полужидкого МПА 0,6-0,8%-ный физиологический раствор полужидкого МПА) и мясо-пептонного агара для посева; проведение анализа; учет результатов.

Для проведения анализа мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см), после того как агар остынет, на его поверхности стерильным пинцетом размещают до 6 мембранных фильтров. Отбор проб пищевых продуктов проводили согласно действующим нормативным документам (ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982). Для приготовления взвеси навеску пищевых продуктов помещали в стерильную колбу (стакан) гомогенизатора и добавляли 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводили в электрическом смесителе. Вначале измельчали материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Для посевов на питательные среды стерильной градуированной пипеткой отбирали взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта. Готовили 3 разведения исследуемой взвеси в физиологическом растворе МПА: 0,6-0,8%-ный физиологический раствор полужидкого МПА разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологического раствора полужидкого МПА готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 полужидкого агара вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. и затем из каждого разведения по 0,1 мл наносили на поверхность мембранного фильтра, расположенного на МПА в чашке Петри. Причем 3 разведения размещали в одной чашке Петри. После этого чашки Петри культивировали в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводили подсчет колоний в каплях агара. Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножали на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения.

Количество мезофильных аэробных и факультативно-анаэробных микроорганизмов, определенное по способу 1 - (9×10 2) и по способу 2 - (10×10 2), существенно не отличалось.

Пример 2. Определение количества мезофильных аэробных и факультативно-анаэробных микроорганизмов в мясе. Определение количества мезофильных аэробных и факультативно-анаэробных микроорганизмов проводили двумя способами: способ 1 (прототип) - Для проведения анализа мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см). Отбор проб пищевых продуктов проводили согласно действующим нормативным документам (ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982). Для приготовления взвеси навеску пищевых продуктов помещали в стерильную колбу (стакан) гомогенизатора и добавляли 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводили в электрическом смесителе. Вначале измельчали материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Для посевов на питательные среды стерильной градуированной пипеткой отбирали взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта. Готовили 6 разведений исследуемой взвеси в физиологическом растворе натрия хлорида: физиологический раствор натрия хлорида разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологическом растворе натрия хлорида готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 натрия хлорида вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. и затем из каждого разведения по 0,1 мл наносили в чашку Петри (всего 6 чашек). После этого чашки Петри культивировали в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводили подсчет колоний в каплях агара. Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножали на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения.

Способ 2 (предлагаемый), включающий приготовление раствора для разведения (0,6-0,8%-ный физиологический раствор полужидкого МПА и 0,6-0,8%-ный физиологический раствор полужидкого МПА) и мясо-пептонного агара для посева; проведение анализа; учет результатов.

Для проведения анализа мясо-пептонный агар разливают в стеклянные или пластмассовые чашки Петри (диаметром 9 см), и после того, как агар остынет, на его поверхности стерильным пинцетом размещают 5-6 мембранных фильтров. Отбор проб пищевых продуктов проводили согласно действующим нормативным документам (ГОСТ 9958-81. Изделия колбасные и продукты из мяса. М., 1982). Для приготовления взвеси навеску пищевых продуктов помещали в стерильную колбу (стакан) гомогенизатора и добавляли 0,85%-ный раствор натрия хлорида в четырехкратном количестве. Гомогенизацию проводили в электрическом смесителе. Вначале измельчали материал на кусочки замедленной скоростью вращения ножей, затем при 15000-20000 об/мин в течение 2,5 мин. Для посевов на питательные среды стерильной градуированной пипеткой отбирали взвесь после 15 мин выдержки при комнатной температуре. 1 мл взвеси содержит 0,2 г продукта. Готовили 6 разведений исследуемой взвеси в физиологическом растворе МПА: 0,6-0,8%-ный физиологический раствор полужидкого МПА разливают по 9 см 3 в стерильные пробирки. Затем в 9 см 3 физиологическом растворе полужидкого МПА готовят десятичные разведения исследуемой взвеси. Для этого в первую пробирку с 9 см 3 полужидкого агара вносят 1 см 3 исследуемой взвеси, из первой пробирки, тщательно перемешав 1 см 3 исследуемой взвеси, переносят во вторую и т.д. и затем из каждого разведения по 0,1 мл наносили на поверхность мембранного фильтра, расположенного на МПА в чашке Петри. Причем 6 разведений размещали в двух чашках Петри. После этого чашки Петри культивировали в перевернутом виде в термостате при 37°С в течение 48 часов. Для определения количества жизнеспособных бактериальных клеток проводили подсчет колоний в каплях агара. Для определения количества мезофильных аэробных и факультативно-анаэробных микроорганизмов число выросших колоний умножали на степень разведения культуры по формуле:

где x - количество мезофильных аэробных и факультативно-анаэробных микроорганизмов,

a - количество выросших колоний,

n - степень разведения.

После культивирования в чашках Петри при 37°С в течение 48 ч количество мезофильных аэробных и факультативно-анаэробных микроорганизмов, определенное по способу 1 - (8×10 5) и по способу 2 - (7×10 5) существенно не отличалось.

Из приведенных примеров видно, что при сравнительной оценке двух методов число КОЕ, определенное по предлагаемому способу, существенно не отличалось от такового при определении общепринятым методом. В тоже время разработанный метод имеет ряд преимуществ. Так, на определение количества жизнеспособных клеток по пяти видам образцов составили: по существующему - 98 мин; по предлагаемому методу - 48 мин. Затраты питательной среды составили по прототипу - 420 мл; по предлагаемому способу - 135 мл. Количество чашек Петри составило по прототипу - 28 штук; по предлагаемому методу - 9 штук.

За текущий период 2013 года специалистами Испытательного центра ФГБУ «Ростовский референтный центр Россельхознадзора» было подтверждено превышенное значение КМАФАнМ в 98 пробах продукции животного происхождения.
КМАФАнМ - количество мезофильных аэробных и факультативно анаэробных микроорганизмов или общая бактериальная обсемененность. Это критерий, который позволяет выявить при температуре 30 °С в течение 48-72 часов все группы микроорганизмов, растущие на определенных средах. Эти микроорганизмы присутствуют всегда и везде (вода, воздух, поверхность оборудования).
Данный показатель характеризует общее содержание микроорганизмов в продукте, применяется повсеместно для оценки качества продуктов, за исключением тех, в производстве которых используются специальные микробные культуры (например, пиво, квас, кисломолочные продукты и т.п.). Его контроль на всех технологических этапах позволяет проследить, насколько "чистое" сырье поступает на производство, как меняется степень его "чистоты" после тепловой обработки и не претерпевает ли продукт повторного загрязнения после термообработки, во время фасовки и хранения.
Величина показателя КМАФАнМ зависит от многих факторов. Наиболее важные – режим термической обработки продукта, температурный режим в период его транспортировки, хранения и реализации, влажность продукта и относительная влажность воздуха, наличие кислорода, кислотность продукта и т.д. Увеличение КМАФАнМ свидетельствует о размножении микроорганизмов, в числе которых могут оказаться патогены и микроорганизмы, вызывающие порчу продукта (например, плесени); большое количество КМАФАнМ чаще всего свидетельствует о нарушениях санитарных правил и технологического режима изготовления, а также сроков и температурных режимов хранения, транспортирования и реализации пищевых продуктов.
Для потребителя показатель КМАФАнМ характеризует качество, свежесть и безопасность продуктов питания. В то же время, оценка качества продукта только по этому показателю имеет ряд недостатков. Во-первых, это только общая, количественная оценка микроорганизмов, поскольку при исследовании не учитываются патогенные, условно патогенные, психрофильные и термофильные микроорганизмы. Во-вторых, метод неприемлем для продуктов, содержащих технологическую и специфическую микрофлору.
Высокое содержание КМАФАнМ в продуктах питания может вызвать пищевое отравление с признаками диареи, гастроэнтерита. В наибольшей степени восприимчивы к данному заболеванию дети раннего возраста, пожилые и ослабленные люди.

Как же уберечь себя и своих близких?
Очень опасно покупать продукты питания на так называемых стихийных рынках, на улице с рук. Полюбившиеся нам готовые салаты, в состав которых входят колбаса, грибы, сыр и яйца, портятся очень быстро. Менее получаса вне холодильника достаточно, чтобы такой продукт скис и стал опасным для жизни. Сыры, кефир, йогурты, сметана и другие молочные производные в жару портятся особенно быстро. Стоит проверить не только дату выпуска, но и герметичность упаковки. Поэтому посещайте большие городские рынки, специально оборудованные для торговли. В торговой точке обязательно должен быть холодильник, нельзя, чтобы скоропортящийся товар лежал на прилавке. На все продукты продавец обязан предоставить сертификаты качества, ветеринарные свидетельства и заключения, а также свою собственную медкнижку. Покупайте продукты в крупных магазинах. В них качество продукта проверяется ежечасно, менеджеры и заведующий магазином проверяют каждую партию прибывшего товара.
К сожалению, предвидеть все случаи, когда вам продадут некачественный продукт, сложно, но если серьезно отнестись к тому, что мы едим, большинства проблем действительно можно избежать.

Отсюда вывод –нужно уметь правильно выбрать, хранить и употреблять продукты!

Количество мезофильных аэробных и факультативно-анаэробных микроорганизмов (КМАФАнМ). Определение количества мезофильных аэробных и факультативно анаэробных микроорганизмов (КМАФАнМ или общее микробное число, ОМЧ) относится к оценке численности группы санитарно-показательных микроорганизмов. В составе КМАФАнМ представлены различные таксономические группы микроорганизмов – бактерии, дрожжи, плесневые грибы. Их общая численность свидетельствуют о санитарно-гигиеническом состоянии продукта, степени его обсемененности микрофлорой. Оптимальная температура для роста КМАФАнМ 35-37оС (в аэробных условиях); температурная граница их роста - пределах 20-45оС. Мезофильные микроорганизмы обитают в организме теплокровных животных, а также выживаают в почве, воде, воздухе. Показатель КМАФАнМ характеризует общее содержание микроорганизмов в продукте. Его контроль на всех технологических этапах позволяет проследить, насколько "чистое" сырье поступает на производство, как меняется степень его "чистоты" после тепловой обработки и не претерпевает ли продукт повторного загрязнения после термообработки, во время фасовки и хранения. Показатель КМАФАнМ оценивается по численности мезофильных аэробных и факультативно анаэробных микроорганизмов, выросших в виде видимых колоний на плотной питательной среде после инкубации при 37оС в течение 24-48 часов. Хотя общее количество бактерий КМАФАнМ не может непосредственно свидетельствовать о наличии или отсутствии патогенных бактерий в пищевых продуктах, этот показатель довольно широко используют, например, в молочной промышленности. Показатель КМАФАнМ (ОМЧ) характеризует санитарно-гигиенические режимы производства и условия хранения молочной продукции. Продукты, содержащие большое количество бактерий, даже непатогенных и не изменяющих их органолептические показатели, нельзя считать полноценными. Значительное содержание жизнеспособных бактериальных клеток в пищевых продуктах (за исключением тех, при производстве которых применяют закваски) свидетельствует либо о недостаточно эффективной термической обработке сырья, либо о плохой мойке оборудования, либо о неудовлетворительных условиях хранения продукта. Повышенная бактериальная обсемененность продукта свидетельствует также о его возможной порче. Данный показатель не исследуют у сметаны и продуктов, творога и продуктов, жидкой кисломолочки, йогурта.

Определение общего числа бактерий

Подготовка образцов для исследования . Из молока и других молочных продуктов готовят десятикратные разведения (по общепринятой методике). Количество разведений для каждого вида продукта готовят с учетом наиболее вероятного микробного обсеменения (табл. 56).

Таблица 56. Разведение молока и молочных продуктов

Примечание. Для определения общего количества бактерий следует выбирать те разведения, при посевах которых на чашках вырастает не менее 50 и не более 300 колоний.

Посев . По 1 мл каждого разведения вносят в 2-3 стерильные чашки Петри и заливают 12-15 мл растопленного и остуженного до 45° С питательного агара. Предварительно чашки маркируют. Сразу после заливки содержимое чашки перемешивают (путем легкого вращательного покачивания) для равномерного распределения посеянного материала. Посевы ставят в термостат при 37° С на 48 ч.

По истечении срока инкубации чашки вынимают и подсчитывают число колоний при помощи счетчика. Число колоний, выросших на каждой чашке, умножают на соответствующее разведение. Полученные результаты по отдельным чашкам складывают, делят на количество чашек и получают среднее арифметическое, которое является показателем общего числа бактерий в 1 г (мл).

Соответствующие ГОСТы регламентируют качество продуктов, что устанавливают по допустимым показателям: общему числу микробов и коли-титру. Пример для двух видов продуктов представлен в табл. 57.

Таблица 57. Показатели общего числа бактерий и коли-титра в молоке

Примечание. Для других молочных продуктов также имеется ГОСТ обусловливающий допустимое количество микробов в 1 мл (г) продукта. Буквы А и Б обозначают категорию продукта.

В кисломолочных продуктах (кефир, простокваша, творог, сметана и др.), содержащих обильную специфическую микрофлору, общее количество бактерий не определяют, а контролируют состав микрофлоры. Для этого из кисломолочных продуктов готовят препараты и красят метиленовым синим. В поле зрения препарата должны находиться только специфические для данного продукта микроорганизмы. Например, для простокваши - молочно-кислые стрептококки и палочки; для кефира - молочно-кислые стрептококки и палочки, единичные дрожжи. Микроскопия позволяет выявить микроорганизмы порчи (плесени и большое количество дрожжей).

Согласно техническому регламенту и ГОСТу требования по количеству бактерий или КМАФАнМ (количеству мезофильных аэробных и факультативно анаэробных микроорганизмов) следующие:

Высший сорт – до 100 тыс. КОЕ /см 3 ;

Первый сорт – до 500 тыс. КОЕ /см 3 ;

Второй сорт – от 500 до 4 000 тыс. КОЕ /см 3 ;

КОЕ – это колониеобразующие единицы, то есть, живые клетки, из которых на питательной среде может вырасти колония.

Определение КМАФАнМ проводят следующими методами:

1. Классический (прямой ) метод : посев на плотные питательные среды.

2. Редуктазная проба – относится к экспресс-методам. Эта проба основана на том, что бактерии, развиваясь в молоке, выделяют фермент редуктазу, способный обесцвечивать органические красители, такие как, резазурин. Чем больше бактерий в молоке, тем больше они выделяют фермента, тем быстрее идет обесцвечивание молока.

3. По изменению электропроводности при развитии микроорганизмов на питательной среде на приборе «Бак Трак 4300».

Определение количества бактерий в молоке по редуктазной

Пробе с резазурином

Метод анализа относится к микробиологическим. Поэтому приотборе пробнадо соблюдать правила отбора проб для микробиологических анализов (ГОСТ Р 53430).

Ход анализа. В стерильную пробирку стерильной пипеткой отмерить 1 см 3 рабочего 0,014 % раствора резазурина, добавить стерильной пипеткой 10 см 3 молока. Закрыть пробирку стерильной резиновой пробкой, перемешать трехкратным переворачиванием и поставить в редуктазник при температуре 37+ 1 о С. Отсчет времени начинается с момента постановки пробирок в редуктазник.

Предварительную оценку результатов делают через 20 минут, окончательную - через 1,0 час, затем через 1,5 часа.

Если через 20 минут молоко обесцветилось, то в таком молоке микроорганизмов более 20 млн/см 3 , это 4 класс по редуктазной пробе, молоко приемке не подлежит, анализ на этом прекращают. Если молоко имеет какой-либо цвет, анализ продолжают.

Если через час молоко серо-сиреневого или сиреневого с серым оттенком цвета, то микроорганизмов в таком молоке менее 500 тыс./см 3 (1 класс по редуктазной пробе, первый сорт молока по ГОСТу).

Если через час молоко сиреневого цвета с розовым оттенком или розового цвета, то микроорганизмов в таком молоке от 500 тыс./см 3 . до 4 млн/см 3 (2 класс по редуктазной пробе, второй сорт молока по ГОСТу).

Если через час молоко белое или бледно-розовое, то микроорганизмов в таком молоке от 4 до 20 млн/см 3 (3 класс по редуктазной пробе, молоко приемке не подлежит).

Розовое кольцо на поверхности во внимание не принимают.

Если при выдержке пробирок в редуктазнике еще в течение получаса молоко по-прежнему остается серо-сиреневого или сиреневого цвета, то бактерий в таком молоке до 300 тыс./см 3 .

Характер микрофлоры сырого молока оценивается по: бродильной, сычужно-бродильной пробе и пробе на наличие мяслянокислых бактерий.

Бродильная проба

Проводится для определения характера микрофлоры сырого молока и качества молочного белка при кислотном свертывании (в основном в сыроделии).

Ход анализа. В чистые пробирки, ополоснутые 2-3 раза исследуемым молоком, наливают по 20 мл молока, закрывают ватными пробками и помещают в редуктазник при температуре 38+ 1 о С.

Через 12 часов хорошее молоко остается жидким или появляются первые признаки свертывания. Молоко низкого качества дает вспученный сгусток. Окончательный результат получают через сутки.

1 класс – сгусток плотный, ровный, без отделения сыворотки. На сгустке допускаются незначительные полоски. Микрофлора - молочнокислая, качество белка высокое.

2 класс – Сгусток с полосками и пустотами, заполненными сывороткой, слабое отделение сыворотки, мелкозернистая структура сгустка. Микрофлора представлена молочнокислыми микроорганизмами с небольшой примесью газообразующей микрофлоры (в основном дрожжи). Качество молочного белка удовлетворительное.

3 класс – Сгусток сжался с обильным выделением зеленоватой или беловатой сыворотки, крупнозернистый, в сгустке пузырьки газа. Микрофлора - в основном газообразующие бактерии. При стянутом сгустке могут быть гнилостные микроорганизмы. Качество молочного белка – плохое.

4 класс – Сгусток разорван, вспучен, пронизан пузырьками газа. Микрофлора - в основном газообразующая, присутствуют маслянокислые бактерии, могут быть гнилостные. Качество молочного белка очень плохое.

Сычужно-бродильная проба

Проводится для определения характера микрофлоры сырого молока и качества молочного белка при сычужном свертывании (в основном в сыроделии). По техническому регламенту молоко для производства сыра должно иметьI или II класс по сычужно-бродильной пробе.

Ход анализа. В большие пробирки наливают приблизительно по 30 см 3 молока, вносят 1 см 3 0,5 %-ного раствора сычужного фермента (0,5 г сычужного фермента растворить в 100 см 3 воды с температурой 30 о С), перемешивают и ставят в термостат с температурой 37-40 о С.

Доброкачественное молоко свертывается в течение 20 минут, а через 12 часов дает плотный сгусток (сырок) с прозрачной сывороткой. Результаты сычужно-бродильной пробы оценивают в соответствии с таблицей 5.

Таблица 5 –Оценка результатов сычужно-бродильной пробы

Задание 2:

1. Подогреть молоко до 30-35 о С. Определить органолептические показатели молока и группу чистоты.

2. Охладить молоко до 20 о С, определить титруемую и активную кислотность молока. Сравнить полученные значения со значениями, приведенными в таблице 6.

3. Выразить кислотность в граммах молочной кислоты. Записать результаты в таблицу 9.

По показателю КМАФАнМ

Но оценка качества по этому показателю имеет ряд недостатков:

Не учитываются анаэробные микроорганизмы;

Не учитываются психрофильные и термофильные микроорганизмы;

Дает только количественную оценку микробиоты;

Не учитывает патогенные микроорганизмы;

Не применим для продуктов, содержащих технологическую микробиоту.

2. Санитарно-показательные микроорганизмы:

Бактерии семейства Enterobacteriaceae;

Энтерококки.

Обнаружение санитарно-показательных микроорганизмов в каком-либо объекте свидетельствует о его загрязнении выделениями человека или животных и о возможном присутствии патогенных микроорганизмов, эпидемиологически связанных с соответствующими экскретами.

Обнаружение бактерий группы кишечных палочек (БГКП). Их наличие свидетельствует о фекальном загрязнении объекта. Количественные величины этого показателя характеризуют степень этого загрязнения. В пищевые продукты БГКП могут попадать с водой, пылью, через грязные руки, переноситься насекомыми.

Нормативами в число санитарно-показательных микроорганизмов включены бактерии семейства Enterobacteriaceae. К этому семейству относятся многие виды непатогенных, условно-патогенных и патогенных микроорганизмов, поэтому обнаружение в 1г (см 3) продукта более 10 2 КОЕ энтеробактерий, не относящихся к патогенным видам, указывает на его потенциальную эпидемиологическую опасность.

Присутствие в окружающей среде и пищевых продуктах энтерококков, и особенно Е. faecalis, свидетельствует о свежем фекальном загрязнении. Обычно их обнаружение в готовых продуктах говорит о нарушениях технологических режимов производства.

3.Условно-патогенные микроорганизмы:

Escherichia coli;

Staphylococcus aureus;

Бактерии рода Рroteus;

Вacillus cereus;

Сульфитредуцирующие клостридии;

Vibrio parahaemolyticus.

Кишечная палочка (Escherichia coli) имеет двойственное значение как санитарно-показательный и условно-патогенный микроорганизм.

Коагулазоположительный золотистый стафилококк (Staphylococcus aureus) определяют как потенциально опасный микроорганизм в продуктах, прошедших тепловую обработку. Повышенное количество его в пищевых продуктах является признаком вторичного обсеменения последних. Микроорганизм попадает в продукты с загрязненного оборудования, инвентаря, с кожных покровов, из носоглотки персонала, а также от больных животных. Для стафилококков характерна устойчивость к неблагоприятным факторам окружающей среды, они интенсивно размножаются при температуре 18÷20ºС, замедленно – при 5÷6ºС. Способны размножаться в концентрированных растворах сахара (до 60%) и поваренной соли (до 12÷14%). Сохраняют жизнеспособность в течение 6 месяцев в высушенном состоянии. Размножение золотистых стафилококков в пищевых продуктах от 10 6 до 10 9 КОЕ/ г (см 3), независимо от первоначального обсеменения, приводит к накоплению энтеротоксина.

Из бактерий рода Рroteus два вида P. vulgaris и P. mirabilis являются возбудителями токсикоинфекций.

Восковидная палочка (Вacillus cereus) чрезвычайно широко распространена в природе, ее основной средой обитания является почва. Она также обнаруживается в воде открытых водоемов (до 10 3 ÷10 4 КОЕ/ см 3), в водопроводной воде и в воздухе. Эти объекты служат источником загрязнения оборудования и аппаратуры предприятий пищевой промышленности и общественного питания и обсеменения разнообразных пищевых продуктов. При обнаружении В. сereus в количестве более чем 10 3 КОЕ/ г (см 3) и отсутствии патогенной микробиоты, можно считать этот микроорганизм причиной пищевого отравления.

Сульфитредуцирующие клостридии – это спорообразующие анаэробные бактерии, в основном представлены С. perfringens и C. sporogenes. С. perfringens постоянно присутствуют в кишечнике человека и животных и являются показателем фекального загрязнения. Наличие в продуктах сульфитредуцирующих клостридий в количестве более чем 10 2 КОЕ/ г (см 3) указывает на нарушение санитарно-гигиенического режима на производстве, в частности, на плохую подготовку оборудования, попадание почвы, грязной воды и т.д., а кроме того, на возможную угрозу присутствия C.botulinum.

В почве, пыли помещений С. perfringens обнаруживается почти в 100% исследованных проб, в воздухе предприятий общественного питания в 10÷12% случаев, на оборудовании пищеблока – почти в 30% случаев, а на санитарной одежде работников пищеблока - 11÷19% случаев. На продуктах питания С. perfringens особенно часто обнаруживают на мясе и мясных продуктах, которые наиболее причастны к вспышкам пищевых токсикоинфекций. Кроме прижизненного обсеменения тканей и органов животных загрязнение может произойти во время разделки туш, измельчении мяса, добавления панировок и специй, часто имеющих высокую степень обсеменения. В процессе кулинарной обработки споры С. perfringens выживают и могут прорастать и размножаться до огромных количеств, способных вызвать пищевое отравление. Споры С. perfringens могут содержать и растительные продукты. Критическим уровнем обсеменения пищевых продуктов спорами С. perfringens считается величина ≥ 10 5 КОЕ/ г (см 3).

Парагемолитические или галофильные вибрионы (Vibrio parahaemolyticus) широко распространены во внешней среде, прежде всего в прибрежных морских водах, морской рыбе и морепродуктах, в придонных морских осадках. Один из представителей рода Vibrio, включающего около 45 видов, V. Parahaemolyticus был причиной многочисленных вспышек гастроэнтеритов, связанных с употреблением контаминированных морепродуктов – мороженой, соленой, копченой рыбы, моллюсков. Установлена циркуляция этого микроорганизма по схеме морская вода - рыба - человек - сточная вода - морская вода.



4. Патогенные микроорганизмы:

Сальмонеллы;

Listeria monocytogenes;

Бактерии рода Yersinia.

Бактерии рода Sаlmonеlla в настоящее время признаны в качестве индикаторных для всей группы патогенных кишечных бактерий. Это обусловлено, во-первых, наличием эффективных методов их обнаружения и, во-вторых, тем, что обнаружение сальмонелл в определенной степени соответствует и обнаружению шигелл в том же объекте, которые методически выделить значительно труднее, чем сальмонеллы.

В настоящее время нормативными документами нормируется количество продукта в г (см 3), в котором недопустимо присутствие бактерий рода Sаlmonеlla.

Бактерии рода Yersinia, и в частности Y. еnterocolitica, являются причинами инфекционных заболеваний с разнообразными клиническими проявлениями. Иерсиниозы нередко ошибочно диагностируются как энтероколиты, пищевые токсикоинфекции, скарлатина, краснуха, гепатит, аппендицит, ревматизм, острое респираторное заболевание и др.

Способность размножаться при температуре 0÷5ºС в холодильных камерах, овощехранилищах и т.п., приводит к возрастанию их количества на контаминированных продуктах. Иерсинии не требовательны к условиям внешней среды и активно размножаются в почве и воде. Основными носителями этих микроорганизмов являются дикие грызуны и птицы. Основной способ заражения человека – алиментарный. Инфекция передается через обсемененные пищевые продукты, чаще при их почвенном и водном загрязнении, реже – выделениями животных. Чаще всего единичные заболевания и групповые вспышки возникают от употребления инфицированных молочных продуктов и овощей – капусты, моркови, лука и др.

Listeria monocytogenes – возбудитель опасного инфекционного заболевания зоонозной природы с преимущественно пищевым путем передачи. Патогенные листерии широко распространены в природе и способны контаминировать разнообразные продукты – молочные, мясные, рыбные, яйца, морепродукты, растительное сырье и др. Нормативными документами устанавливается масса или объем продукта, в которых данные бактерии должны отсутствовать.

5. К микроорганизмам порчи относятся:

Плесневые грибы;

Молочнокислые бактерии.

Нормативными документами установлены количественные критерии их содержания в некоторых группах пищевых продуктов. Однако перечень этой группы микроорганизмов представляется неполным. Так, показано значение гнилостных бактерий рода Pseudomonas как возбудителей порчи. Микробиологическую стойкость пищевых продуктов при хранении необходимо оценивать и по таким показателям, как КМАФАнМ, термофильных и психрофильных микроорганизмов, а также специальных видов (или родов) микроорганизмов – типичных возбудителей порчи. Например, в продуктах, предназначенных для хранения при температуре более 30ºС ± 5ºС, определяют количество термофилов; для хранения при нерегулируемой температуре 20ºС ± 5ºС – КМАФАнМ; для хранения при пониженной температуре – количество психрофилов.

6. Микроорганизмы заквасочной микробиоты и пробиотические микроорганизмы:

Молочнокислые и пропионовокислые бактерии;

Бифидобактерии;

В число нормативных показателей включены микроорганизмы заквасочной микробиоты и пробиотические микроорганизмы (для продуктов с нормируемым уровнем биотехногенной микробиоты). К числу таких показателей относятся показатели количественного содержания молочнокислых, пропионовокислых бактерий, дрожжей, бифидобактерий и другие. Значения этих показателей определяются спецификой производства конкретного продукта и его назначением.

Контрольные вопросы:

1. Какой документ регламентирует критерии безопасности пищевых продуктов и методы их определения?

2. В чем состоит основной принцип системы контроля качества НАССР?

3. Перечислите основные положения системы контроля НАССР.

4. Основной принцип международной системы оценки качества производства по стандартам ISO?

5. Какие факторы опасности включаются в перечень учитываемых в обязательном порядке? Где они перечислены?