Super-Bluda

Пищевая ценность молочных продуктов. Питательная ценность молока

Пищевая ценность молочных продуктов. Питательная ценность молока

Пищевая ценность и химический состав

Молоко - биологическая жидкость, образующаяся в молочной железе млекопитающих и предназначенная для вскармливания новорожденного детеныша. Это - полноценный и полезный продукт питания, содержащий все необходимые элементы для построения организма. В его состав входят свыше 200 различных компонентов: 20 глицеридов жирных кислот, более 20 аминокислот, 30 макро- и микроэлементов, 23 витамина, 4 сахара и т.д. Состав молока различных млекопитающих зависит от условий окружающей среды, в которых происходит рост молодого организма, и может изменяться в результате заболеваний животных, микробиологических и других происходящих в нем процессов.

Вода. Молоко состоит на 85...89% из воды, которая принимает участие в различных реакциях, протекающих в организме животных: гидролизе, окислении и т.д. Основным источником ее служит кровь, и только часть образуется в процессе синтеза триглицеридов, при этом выделяются три молекулы воды.

Вода в молоке находится в свободном и связанном состоянии. Свободной воды значительно больше (83...86%), чем связанной (3,0...3,5%). Она принимает участие в биохимических реакциях и представляет собой раствор различных органических и неорганических веществ. В свободной воде растворяются молочный сахар, водорастворимые витамины, минеральные вещества, кислоты и т.п. Ее легко можно удалить при сгущении, высушивании молока. Свободная вода замерзает при 0°С.

Связанная вода (адсорбционно-связанная вода) удерживается около поверхности коллоидных частиц (белков, фосфолипидов, полисахаридов) молекулярными силами. Гидратация белковых молекул обусловлена присутствием на их поверхности полимерных групп (гидрофильных центров). К ним относятся карбоксильные, гидроксильные, аминные и другие группы. В результате вокруг частиц образуются плотные гидратные (водные) оболочки, препятствующие их соединению (агрегированию). Связанная вода по своим свойствам отличается от свободной воды молока. Она замерзает при температуре ниже 0 °С, не растворяет сахар, соли и другие вещества, при высушивании трудно удаляется.

Особая форма связанной воды -химически связанная вода. Это вода кристаллогидратов и кристаллизованная. Она связана с кристаллами молочного сахара С 12 Н 22 О м Н 2 0 (лактозой).

Сухие вещества. Сухих веществ (СВ) в молоке содержится в среднем 12,5%, их получают в результате высушивания молока при

102... 105 °С. В состав сухих веществ входят все компоненты молока, кроме воды. Питательная ценность молока определяется содержанием в нем сухого вещества. Расход сырья на 1 кг готовой продукции при переработке молока на творог, сыр, консервы и т.д. также зависит от количества сухого вещества.

Продуктивность и племенное качество животных оценивают не только по содержанию жира в молоке и удою, но и по содержанию в нем сухих веществ.

Белки молока. Белок -самый ценный компонент молока. В нем содержатся разнообразные белки, различающиеся по строению, свойствам и играющие строго определенную роль. Массовая доля белков в молоке 2,1 ...5%.

С химической точки зрения белки -это высокомолекулярные соединения, входящие в состав всех живых структур клеток, тканей и организма в целом. Белки -это строительный энергетический материал, выполняющий различные функции: транспортную, защитную, регуляторную. Построены они по одному принципу и состоят из четырех основных элементов: углерода, кислорода, водорода и азота. Все белки содержат незначительное количество серы, а некоторые-железо, кальций, фосфор, цинк и др. Структурными блоками белков служат остатки аминокислот, расположенных в определенном порядке и связанных между собой в цепочку. Белковая молекула состоит из более чем 20 аминокислот.

В состав кислот входят аминная (NH 2) и карбоксильная (СООН) группы. Аминная группа находится в ^-положении по отношению к карбоксиду. Аминокислоты могут содержать равное число карбоксильных и аминных групп (серин, аланин, цистеин, глицин, фенилаланин и т.д.) - они нейтральны, а есть аминокислоты, содержащие две карбоксильные группы (глутаминовая кислота) или две аминогруппы (лизин); их водные растворы показывают соответственно кислую или щелочную реакцию.

Белок представляет собой длинную цепь различных аминокислотных остатков. Соединение аминокислот в белковый полимер происходит следующим образом: аминогруппа одной аминокислоты вступает в реакцию с карбоксильной группой другой аминокислоты, при этом выделяются молекулы воды и образуется пептидная связь -СО-NH-.

Аминокислоты, соединяясь в разных комбинациях, образуют длинные полипептидные цепи с группами R в виде ответвлений. Последовательность полипептидной цепи аминокислотных остатков специфична для каждого белка. Молекулы белка обладают определенной гибкостью. В воде гидрофобные участки контактируют друг с другом, а гидрофильные - с водой и молекулой. Изгибаясь, молекула сворачивается таким образом, что все гидрофобные боковые цепи оказываются внутри глобулы, а гидрофильные -на ее поверхности, ближе к воде.

Первичная структура - вытянутая нить, вторичная - спираль, третичная - глобула, при объединении глобул в одно целое образуется четвертичная структура. В протеидах (сложных белках) в отличие от протеинов (простых белков) помимо белковой части существует еще и дополнительный компонент небелковой природы (остатки фосфорной кислоты в фосфопротеидах, жиры, углеводы и т.п.), влияющий на свойства белка. В воде белок образует устойчивый коллоидный раствор.

В молоке содержится более 20 различных белков, но основные-казеин и сывороточные белки: альбумин, глобулин и др. Питательная ценность сывороточных белков выше, чем казеина.

Казеин - основной белок молока, его содержание колеблется от 2 до 4,5%. В молоке казеин присутствует в виде коллоидных частиц (мицелл).

Строение казеина. На поверхности мицелл находятся заряженные группы (отрицательный знак) и гидратная оболочка, в связи с этим они не склеиваются и не коагулируют при приближении друг к другу. Частицы казеина в свежем молоке достаточно устойчивы. Как и другие животные белки, казеин содержит свободные аминогруппы (NH 2) и карбоксильные группы (СООН): первых-83, вторых-144, поэтому он обладает кислотными свойствами и имеет изоэлектри- ческую точку при pH 4,6...4,7. Кроме того, казеин содержит -ОН группы фосфорной кислоты, будучи не простым, а сложным белком-фосфопротеидом. В молоке казеин соединен с кальциевыми солями и образует казеинаткальцийфосфатный комплекс, который в свежевыдоенном молоке образует мицеллы, способные связывать значительное количество воды. Формула казеина:

Казеин, выделенный из молока, состоит из следующих фракций: а, Ь, с, п. Они различаются по физико-химическим свойствам, чувствительности к ионам кальция и растворимости. Так, а- и ^-казеин чувствительны к ионам кальция и под их действием выпадают в осадок, нестабильны и располагаются внутри мицелл; с-казеин нечувствителен к ионам кальция и располагается на поверхности. Под действием сычужного фермента осаждаются все три фракции казеина; четвертая фракция - п-казеин - не входит в состав мицелл и под действием сычужного фермента не осаждается, поэтому при производстве творога и сыра сычужным способом он теряется с сывороткой.

Свойства казеина. Выделенный из молока и обработанный спиртом казеин представляет собой аморфный порошок белого цвета без вкуса и запаха, плотностью 1,2...1,3 г/см 3 . Он хорошо растворяется в некоторых растворах солей, хуже -в воде; в эфире и в спирте нерастворим совсем.

Благодаря казеину цвет молока тоже белый. Казеин при нагревании не выпадает в осадок, но коагулирует под действием сычужного фермента, кислот и солей. Эти его свойства используют при производстве кисломолочных продуктов и сыра. Концентрация казеина и размер его частиц определяют скорость осаждения и прочность белковых сгустков. От размера частиц зависит термоустойчивость молока: чем они крупнее, тем оно менее термоустойчиво. Гидрофильные свойства казеина, т.е. его способность связывать и удерживать влагу, определяют качество получаемых кислотных и сычужных сгустков, а также консистенцию готовых кисломолочных продуктов и сыра. Характер взаимодействия казеина с водой зависит от его аминокислотного состава, реакции среды и концентрации в ней солей.

При осаждении белков кислотой, сычужным ферментом, после механической и тепловой обработки гидрофильные свойства казеина меняются в результате изменения структуры белковых частиц и перераспределения на их поверхности гидрофобных и гидрофильных групп. На гидрофильные свойства казеина большое влияние оказывают сывороточные белки молока, так как в процессе тепловой обработки они взаимодействуют с его частицами. Сывороточные белки активнее связывают воду, чем казеин; при этом повышаются его гидрофильные свойства. Эти свойства учитывают при выборе режимов пастеризации молока. Под действием кислот, сычужного фермента, хлорида кальция казеин выпадает в осадок, а коллоидный раствор белка превращается в сгусток, или гель; частицы белка соединяются друг с другом в цепочки и образуют пространственные сетки.

Сывороточные белки (альбумин и глобулин). Ихвмо- локе содержится значительно меньше, чем казеина (0,2...0,7%), т.е.

15...22% массы всех белков. Альбумин и глобулин содержат больше серы, чем казеин, они растворимы в воде и не свертываются под действием кислот и сычужного фермента, но выпадают в осадок при нагревании, а вместе с солями образуют «молочный камень».

Альбумин и глобулин имеют огромное значение для новорожденного животного. Иммуноглобулины, переходящие из крови животного в молоко, представляют собой антитела, нейтрализующие чужеродные клетки, т.е. выполняют защитную роль в организме. Особенно много этих белков в молозиве. Так, содержание альбумина может достигать 10...12%, глобулина-до 8...15%.

Сывороточные белки содержатся в молоке в виде мелких по сравнению с казеином частиц, на поверхности которых имеется суммарный отрицательный заряд. Частицы окружены прочной гидратной оболочкой, поэтому они не свертываются даже в изоэлектрической точке. При нагревании молока до 70...75 °С альбумин выпадает в осадок, а глобулин осаждается нагреванием до 80 °С. Нагреванием молока до 90...95 °С можно выделить из сыворотки альбумины и глобулины. Сывороточные белки можно выделить путем совместной тепловой, кальциевой или кислотной обработки. Полученную белковую массу используют при производстве белковых продуктов, плавленых сыров, продуктов детского и диетического питания. Белок оболочки составляет около 70% ее массы. Этот сложный белок представляет собой смесь белка и фосфолипидов. В жировых шариках оболочки белка содержится жироподобное вещество-лецитин. В отличие от других белков молока в сывороточных белках меньше азота, нет фосфора, кальция, магния.

Молочный жир. Представляет собой соединение сложных эфиров глицерина и жирных кислот. Глицерин, входящий в состав триглицеридов, является трехатомным спиртом.

Жирные кислоты содержат карбоксильную группу (СООН) и радикал, на конце которого находятся метальная группа (СН 3) и неодинаковое число углеродных атомов (от 0 до 24), образующих углеродные цепочки разной длины. Углерод может присутствовать в виде насыщенных метиленовых (-СН 2 -) соединений -в этом случае жирные кислоты будут насыщенными (предельными)-или ненасыщенных этиленовых соединений (-СН=) - кислоты будут ненасыщенными (непредельными).

Массовая доля жира в молоке в среднем составляет 3,8%. Жир синтезируется из кормов, составной частью которых являются протеины, углеводы и жиры. Эти вещества, попадая в желудочно-кишечный тракт животного, претерпевают сложные изменения. В желудках жвачных животных (в рубце) при брожении образуются уксусная кислота и другие летучие жирные кислоты (пропионовая, масляная и др.), которые являются предшественниками жира: чем больше образуется уксусной кислоты, тем жирнее молоко. Если увеличивается количество пропионовой кислоты, то содержание жира снижается, а повышается количество белка в молоке. Перечисленные летучие жирные кислоты всасываются сначала в лимфу, затем в кровь, которая переносит их в молочную железу, где происходит синтез жира. Источником молочного жира может быть также нейтральный жир крови, образующийся в печени.

Массовая доля жира в молоке зависит от породы, продуктивности, возраста и рациона кормления животного. В парном молоке жир присутствует в жидком состоянии и образует эмульсию в водной части. В холодном молоке жир твердый и находится в виде суспензии. Жир в молоке имеет форму шариков (рис. 1) с прочной упругой оболочкой, поэтому они не склеиваются. Диаметр шарика 3...4 мкм (размеры колеблются от 0,1 до 10 мкм, в отдельных случаях-до 20 мкм). В 1 мл молока содержится от 1 млрд до 12 млрд, в среднем от 3 млрд до 5 млрд жировых шариков. Содержание жировых шариков в молоке меняется в течение лактационного периода: в начале лактации они более крупные и их меньше, а к концу лактации-наоборот. Жировые шарики незначительного размера всплывают быстрее, так как они слипаются в комочки.

Физическая стабильность шариков жира в молоке и молочных продуктах зависит в основном от состава и свойств их оболочек. Оболочка жирового шарика состоит из двух слоев: внешний - рыхлый (диффузный), легко десорбирует при технологической обработке молока; внутренний-тонкий, плотно прилегающий к кристаллическому слою высокоплавких триглицеридов жировой глобулы (см. рис. 1).

В состав оболочного вещества входят белки, фосфолипиды, сте- рины, 6-каротин, витамины A, D, Е, минеральные вещества Си, Fe, Mo, Mg, Se, Na, К и др.

Рис. 1.

1 - жировая глобула: 2 - внутренний слой; 3 - наружный слой

Рис. 2.

1 - гидрофильная оболочка: 2 - липофильная оболочка: 3 - жир: 4 - вода

Внутренний слой включает лецитин и в незначительном количестве кефалин, сфингомиелин. Фосфолипиды - хорошие эмульгаторы, их молекула состоит из двух частей: липофильной, сходной с жиром, и гидрофильной - присоединяет гидратную воду.

Белковые компоненты оболочки включают две фракции: растворимую в воде и плохо растворимую в воде. Водорастворимая белковая фракция содержит гликопротеид с высоким содержанием углеводов и ферменты: фосфотазу, холинэстеразу, ксантиноксидазу и др.

Плохо растворимая в воде фракция содержит 14% азота, аргинина больше, чем в молоке, и меньше лейцина, валина, лизина, аскорбиновой и глютаминовой кислот. В ее состав входят также в значительном количестве гликопротеиды, содержащие гексозы, гексозамины и сиаловую кислоту. Внешний слой оболочки жирового шарика состоит из фосфатидов, оболочного белка и гидратной воды. Состав и структура оболочек жировых шариков изменяются после охлаждения, хранения и гомогенизации молока и сливок.

Белковая оболочка шариков разрушается также при механическом и химическом воздействии. При этом жир выделяется из оболочки и образует сплошную массу. Эти свойства используют при производстве сливочного масла и при определении жирности молока.

В результате технологической обработки молока в первую очередь изменяется внешний слой оболочки из-за неровной, шероховатой, рыхлой поверхности и довольно большой толщины после перемешивания, встряхивания и хранения. Оболочки шариков жира становятся более гладкими и тонкими в результате десорбции липопроте- идных мицелл из оболочек в плазму. Одновременно с десорбцией мицелл происходит сорбция белков и других компонентов плазмы молока на поверхности мембраны шариков жира. Эти два явления-десорбция и сорбция - вызывают изменение состава и поверхностных свойств оболочек, что приводит к снижению их прочности и частичному разрыву.

Уже в процессе тепловой обработки молока происходит частичная денатурация мембранных белков, что способствует дальнейшему снижению прочности оболочек шариков жира. Они могут разрушиться довольно быстро и в результате специального механического воздействия: при производстве масла, а также под действием концентрированных кислот, щелочей, амилового спирта.

Стабильность жировой эмульсии в первую очередь обусловлена возникновением на поверхности капелек жира электрического заряда благодаря содержанию на поверхности оболочки жирового шарика полярных групп - фосфолипидов, СООН, NH 2 (рис. 2). Таким образом, на поверхности образуется суммарный отрицательный заряд (изоэлектрическая точка при pH 4,5). К отрицательно заряженным группам присоединяются катионы кальция, магния и др. В результате образуется второй электрический слой, силы отталкивания которого превышают силы притяжения, поэтому расслоения эмульсии не происходит. Кроме того, жировую эмульсию дополнительно стабилизирует гидратная оболочка, которая образуется вокруг полярных групп мембранных компонентов.

Вторым фактором устойчивости жировой эмульсии является образование на границе раздела фаз структурно-механического барьера, обусловленного тем, что оболочки жировых шариков обладают повышенной вязкостью, механической прочностью и упругостью, т.е. свойствами, которые препятствуют слиянию шариков. Таким образом, для обеспечения устойчивости жировой эмульсии молока и сливок в процессе выработки молочных продуктов необходимо стремиться сохранить неповрежденными оболочки шариков жира и не снижать степень их гидратации. Для этого необходимо сократить до минимума механические воздействия на дисперсную фазу молока при транспортировании, хранении и обработке, избегать его вспенивания, правильно проводить тепловую обработку, так как длительная выдержка при высоких температурах может вызвать значительную денатурацию структурных белков оболочки и нарушение ее целостности.

Дополнительное диспергирование жира путем гомогенизации стабилизирует жировую эмульсию. Если при выработке одних молочных продуктов перед инженером-технологом стоит задача предотвратить агрегирование и опалесценцию шариков жира, то при получении масла, наоборот, необходимо разрушить (деэмульгировать) стабильную жировую эмульсию и выделить из нее дисперсную фазу.

Молочный жир отличается от других видов жиров тем, что легче переваривается и усваивается. В нем содержится более 147 жирных кислот. Жиры животного и растительного происхождения содержат

5...7 низкомолекулярных жирных кислот с числом углеродных атомов от 4 до 14.

Молочный жир обладает приятным вкусом и ароматом, но под влиянием света, высокой температуры, кислорода, ферментов, растворов щелочей и кислот он может приобрести неприятный запах, прогорклый вкус, привкус сала. Такие изменения происходят при гидролизе, окислении и прогоркании жира.

Гидролиз жира - процесс действия воды на триглицериды при повышенной температуре, в результате которого триглицериды расщепляются на глицерин и жирные кислоты. При гидролизе повышается кислотность жира. Происхождение и способ получения молочного жира могут влиять на скорость гидролиза. Если молочный жир получают вытапливанием при 65 °С, то гидролиз протекает быстрее, чем при 85 °С. Гидролиз протекает медленнее при пониженной температуре (4 °С) и в герметичной упаковке.

Окисление жира происходит под действием солнечных лучей, повышенной температуры или катализаторов, в результате чего по месту двойных связей присоединяются водород и кислород. В процессе окисления молочного жира в результате обесцвечивания каротиноидов обесцвечивается и жир, а также изменяются запах и вкус. Окисление жира возникает в результате перехода жидких ненасыщенных кислот в твердые насыщенные. Прогоркание жира приводит к появлению в молочном жире горького вкуса и специфического запаха, обусловленных образованием пероксида, альдегидов и т.д. Процесс прогоркания происходит под воздействием ферментов, кислорода, тяжелых металлов, микроорганизмов.

Все перечисленные изменения, происходящие в жире, сложно разграничить, так как они протекают совместно и сопровождаются побочными процессами, поэтому в производственных условиях определяют физико-химические константы жира, которые зависят от его количественного и качественного состава. К ним относятся кислотное число, число Рейхерта-Мейссля, йодное число (число Гюбля), число омыления (Кеттсторфера), температура застывания и кипения.

Углеводы. В молоке они представлены лактозой - молочным сахаром-и состоят из углерода, водорода и кислорода. Лактоза относится к дисахаридам (С |2 Н 22 О п) и включает остатки двух простых сахаров - галактозы и глюкозы. Средняя массовая доля лактозы 4,7%.

Углеводы необходимы для обмена веществ, работы сердца, печени, почек; входят в состав ферментов.

Лактоза образуется в железистой ткани молочной железы путем соединения галактозы, глюкозы и молекулы воды. Молочный сахар содержится только в молоке. Чистая лактоза - белый кристаллический порошок, в 5...6 раз менее сладкий, чем сахар (сахароза). Лактоза хуже растворяется в воде, чем сахароза.

В молоке лактоза присутствует в двух формах: аи Ь, которые различаются физическими и химическими свойствами и могут переходить одна в другую со скоростью, которая зависит от температуры. В перенасыщенном растворе лактоза образует кристаллы более или менее правильной формы.

Кристаллическую лактозу получают из молочной сыворотки. Кристаллизация лактозы происходит также при выработке сгущенного молока с сахаром.

При нагревании молока до температуры выше 150 °С в нем происходит реакция между лактозой и белками или некоторыми свободными аминокислотами. В результате образуются меланоидины - вещества темного цвета, с выраженными запахом и вкусом. При нагревании до 110... 130°С лактоза теряет кристаллизационную воду, а при нагревании до 185 °С происходит ее карамелизация. Разложение молочного сахара в растворах начинается при температуре выше 100 °С, при этом образуются молочная и муравьиная кислоты.

Под действием фермента лактазы, выделяемой молочнокислыми и другими бактериями, лактоза расщепляется на простые сахара. Процесс распада лактозы под действием микроорганизмов называется брожением. До стадии образования пировиноградной кислоты (С 3 Н 4 0 2) все типы брожения идут одинаково. Дальнейшее превращение кислоты проходит в разных направлениях. В результате образуются различные продукты: кислоты (молочная, уксусная, пропионовая, масляная и др.); спирты (этиловый, бутиловый и др.); углекислый газ и т.д.

Различают следующие виды брожения: молочнокислое, спиртовое, пропионово-кислое, маслянокислое.

Молочнокислое брожение вызывается молочнокислыми бактериями (стрептококками и палочками). В процессе брожения пировиноградная кислота восстанавливается в молочную кислоту. Из одной молекулы сахара образуется четыре молекулы молочной кислоты:

После накопления определенного количества молочной кислоты в процессе сбраживания молочнокислые бактерии погибают. Для палочек предел накопления молочной кислоты выше, чем для кокковых форм. Образовавшаяся в процессе брожения молочная кислота имеет большое значение для коагуляции казеина в производстве большинства кисломолочных продуктов - она придает продукту кислый вкус. Выход молочной кислоты зависит от вида молочнокислых бактерий, входящих в состав закваски.

Наряду с молочной кислотой при молочнокислом брожении образуются летучие кислоты (муравьиная, пропионовая, уксусная и др.), спирты, уксусный альдегид, ацетон, ацетоин, диацетил, углекислый газ и др. Многие из них придают готовому продукту специфические кисломолочные вкус и запах. Для улучшения этих свойств кроме молочнокислых бактерий используют и ароматобразующие микроорганизмы, которые из пировиноградной кислоты образуют ароматические вещества -ацетоин, уксусный альдегид, диацетил. Для накопления диацетила необходимо присутствие лимонной кислоты, которую добавляют в молоко, что улучшает вкус и аромат продукта. При производстве кисломолочных продуктов используют разные комбинации молочнокислых бактерий, а также вкусовые и ароматические вещества.

Спиртовое брожение вызывают дрожжи, содержащиеся в бактериальных заквасках (кефирные грибки). Под действием этих заквасок пировиноградная кислота расщепляется до уксусного альдегида и диоксида углерода. Уксусный альдегид затем восстанавливается в этиловый спирт. В результате из одной молекулы лактозы образуется по четыре молекулы спирта и диоксида углерода:

Образующиеся продукты, в которых накапливается 0,2...3% спирта, придают кисломолочным продуктам (кефир, кумыс, айран) острый освежающий вкус.

Пропионово-кислое брожение происходит в созревающих сырах под действием ферментов, которые выделяются пропио- ново-кислыми бактериями. Это брожение начинается после образования молочной кислоты в присутствии молочнокислых бактерий. К продуктам пропионово-кислого брожения относятся пропионовая и уксусная кислоты, диоксид углерода, вода:

Маслянокислое брожение. Этот процесс вызывают спорообразующие маслянокислые бактерии, выделяющие ферменты. Этот вид брожения нежелателен при производстве кисломолочных продуктов. Сыры приобретают неприятные вкус, запах и вспучиваются.

Маслянокислые бактерии попадают в молоко из почвы, навоза, пыли и выдерживают пастеризацию. Их присутствие -результат несоблюдения санитарных правил получения исходного сырья.

Минеральные вещества. Молоко -постоянный источник поступления в организм минеральных веществ. В зависимости от содержания их подразделяют на макро- и микроэлементы. В среднем в молоке содержится 0,7% в виде солей неорганических и органических кислот.

Макроэлементы. Из этой группы важное значение имеют кальций, фосфор, калий, натрий, магний, сера и хлор. В молоке они присутствуют в виде неорганических и органических солей (средних и кислых) и в свободном состоянии. Кислые соли наряду с другими веществами обусловливают кислотность свеженадоенного молока. Основная часть солей находится в молоке в ионном и молекулярном состоянии, а соли фосфорной кислоты образуют коллоидные растворы. Среднее содержание макроэлементов в молоке: натрий- 50 мг%, калий -145, кальций -120, магний -13, фосфор-95, хлор - 100, сульфат - 10, карбонат -20, цитрат (в форме остатка лимонной кислоты) - 175 мг%.

О солевом составе молока можно судить по содержанию и соотношению макроэлементов. Преимущественно в молоке присутствуют соли калия, кальция и натрия, а также неорганических и органических кислот: фосфорнокислые (фосфаты), лимоннокислые (цитраты), хлористые (хлориды). Ионы кальция укрепляют гидратную оболочку, так как адсорбируются на поверхности мицелл казеина и тем самым повышают их устойчивость. В буферной системе молока принимают участие фосфаты, цитраты и карбонаты.

Кальций имеет большое значение для процессов переработки молока. Содержание его в молоке колеблется от 112 до 128 мг%. Около 22% всего кальция связано с казеином, а остальное количество представлено солями- фосфатами и цитратами. Низкое содержание кальция в молоке обусловливает медленное сычужное свертывание казеина при выработке сыра и творога, а его избыток -свертывание белков молока при стерилизации. При скисании молока почти весь кальций переходит в сыворотку, так как под действием молочной кислоты он отщепляется от казеинового комплекса. От содержания кальция в молоке зависят свойства и качество молочных продуктов. Важная роль принадлежит кальцию при производстве плавленых сыров. Он связывает соли-плавители, переходит из казеината кальция в пластичный казеинат натрия. В последнем жир лучше эмульгирует, при этом формируется характерная консистенция сыра. От содержания кальция зависят также качество получаемого сгущенного молока и растворимость сухого молока при производстве восстановленного молока.

Фосфор в молоке входит в состав казеинаткальцийфосфатного комплекса. Устойчивость белка к воздействиям протеолитических ферментов зависит от содержания фосфора. Фосфор придает стабильность оболочке жировых шариков. Развитие микроорганизмов в молоке в производстве кисломолочных продуктов связано с фосфором.

Микроэлементы. В молоке обнаружено 19 микроэлементов. В 1 кг молока содержится примерно (мг): меди -0,067...0,205; марганца-0,1 16...0,365; молибдена- 0,015...0,090; кобальта-0,001...0,009; цинка - 0,082...2,493; магния -84,05... 140; железа-2,55...77,10; алюминия - 1,27...22,00; никеля-0,017...0,323; свинца- 0,017...0,091; олова - 0,004...0,071; серебра - 0,0002...0,11; кремния - 1,73...4,85; йода-0,012...0,020; титана, хрома, ванадия, сурьмы и стронция-десятичные доли и следы. Содержание микроэлементов в молоке зависит от рациона, стадии лактации животных и других факторов. В молозиве некоторых микроэлементов, например железа, меди, йода, кобальта, цинка, значительно больше, чем в молоке. Микроэлементы входят в состав витаминов и ферментов.

Микроэлементам принадлежит важная роль в организме человека. Так, марганец действует как катализатор при окислительных процессах и необходим для синтеза витамина С, а также витаминов В! и D. Кобальт входит в состав витамина В 12 . Йод стимулирует деятельность щитовидной железы. Некоторые микроэлементы способствуют образованию пороков в молоке, так как катализируют химические реакции. Излишнее количество меди приводит к окислению жира, и молоко приобретает окисленный привкус; недостаток ее замедляет процесс молочнокислого брожения.

Витамины. Содержащиеся в молоке витамины практически все переходят в него из корма, поедаемого животными, а также синтезируются микрофлорой рубца. Их количество зависит от времени года, породы, индивидуальных особенностей животных. Недостаток или отсутствие витаминов приводит к нарушению обмена веществ и возникновению таких заболеваний, как рахит, цинга, авитаминоз и др.

Витамины служат регуляторами обмена веществ, поскольку многие из них входят в состав различных органических соединений: кислот, спиртов, аминов и т.п. Отмечена чувствительность витаминов к высокой температуре, действию кислот, кислорода и света. Большинство витаминов растворяется в воде, некоторые -в жирах, эфире, хлороформе и т.д. В связи с этим витамины подразделяют на водорастворимые и жирорастворимые.

Водорастворимые витамины включают витамины В, В 2 , В 6 , В 12 , PP, холин и фолиевую кислоту.

Витамин В / (тиамин) в чистом виде представляет собой белый кристаллический порошок. В 1 кг молока содержится около 500 мг тиамина и количество его зависит от сезона года, а также от микрофлоры желудочно-кишечного тракта. В щелочных растворах витамин разлагается, в кислых он стабилен. При сушке разрушается до 10% тиамина, при сгущении-до 14%.

Витамин В, стимулирует рост микроорганизмов, в том числе и молочнокислых бактерий, так как является коферментом дикар- боксилазы. В связи с этим количество этого витамина в кисломолочных продуктах увеличивается на 30%. В обезжиренном молоке содержание витамина В, повышается и достигает 340 мг/кг, в сыворотке-270, пахте -350 мг/кг. Суточная потребность человека в тиамине составляет 1...3 мг.

Витамин В 2 (рибофлавин) синтезируется в желудочно-кишечном тракте животного. В молоке его содержится 1,6 мг/кг; в молозиве -6; в сыре -3,07 мг/кг; в масле -следы. Рибофлавин устойчив к воздействию высоких температур, пастеризации, в кисломолочных продуктах его количество увеличивается до 5% по сравнению с исходным молоком, и только при сушке его становится меньше на 10... 15%. Витамин В 2 входит в состав ферментов и принимает участие в углеводном и белковом обменах, от него зависит окислительно-восстановительный потенциал молока.

Рибофлавин придает зеленовато-желтый цвет сыворотке и желтую окраску сахару-сырцу. При недостатке витамина В 2 наблюдаются задержка роста, заболевания глаз и т.д. Суточная потребность в витамине В 2 для взрослых людей 1,2...2 мг.

Витамин В 3 (пантотеновая кислота) стимулирует развитие молочнокислых бактерий, входит в состав кофермента А, принимающего участие в синтезе жирных кислот, стирола и других компонентов. В молоке его содержится 2,7 мг/кг; в молочной сыворотке- 4,4; в пахте -4,6; в обезжиренном молоке -3,6 мг/кг. Витамин В 3 разрушается при стерилизации.

Витамин В 6 (пиридоксин) в молоке содержится в свободном и связанном с белками состоянии. В свободном состоянии количество его в молоке составляет 1,8 мг/кг; в связанном - 0,5; в масле -2,6; в сгущенном молоке с сахаром -0,33...0,4 мг/кг. Пиридоксин стимулирует рост микроорганизмов, устойчив к высоким температурам. Недостаток витамина В 6 в организме приводит к заболеваниям нервной системы и кишечника.

Витамин В /2 (кобаломин) синтезируется микрофлорой желудочно-кишечного тракта. Содержание в молоке - 3,9 мг/кг. В весенний и летний периоды в молоке содержится значительно меньше витамина В 12 , чем в осенний период. Снижение содержания витамина происходит также при обработке молока высокими температурами (стерилизация), потери могут составлять 90%. При производстве кефира на 10...35% количество кобаломина снижается в связи с тем, что он используется молочнокислыми бактериями.

Кобаломин принимает участие в обменных процессах, катализирует реакции кровообращения.

Витамин С (аскорбиновая кислота) - кристаллическое соединение, легко растворимое в воде с образованием кислых растворов. Содержание: в сыром молоке -3...35 мг/кг; в сыворотке -4,7; в сухом молоке -2,2; в сгущенном -3,9; в сыре -1,25 мг/кг.

Витамин синтезируется в организме, участвует в окислительновосстановительных процессах, инактивирует токсины, улучшает всасывание гормонов. Отсутствие витамина вызывает болезнь десен, при недостатке его организм становится менее устойчивым к инфекционным заболеваниям. При хранении сырого молока содержание витамина С значительно снижается. Длительная пастеризация, а также сгущение уменьшают содержание витамина С до 30%.

Витамин PP (никотиновая кислота, или инацин) синтезируется микрофлорой кишечника. В сыром молоке его содержится 1,51 мг/кг (колебания 1,82... 1,93 мг/кг). Много витамина PP в сухом молоке-4,8 мг/кг; в твороге -1,5; в сливках -1,0; в сметане -0,9; в сыре-0,37 мг/кг. В простокваше его меньше на 27...73%, а при производстве сгущенного молока содержание инацина уменьшается на 10%.

Витамин Н (биотин) устойчив к высоким температурам как при пастеризации, так и при стерилизации. Содержание в молоке-0,047 мг/кг. В летнее время количество биотина в молоке увеличивается в 2 раза. При сушке и сгущении молока содержание витамина снижается на 10... 15%. Биотин благоприятно действует на рост микроорганизмов (дрожжей и т.п.).

Холин входит в состав лецитиново-белковой оболочки жирового шарика. Содержание: в молоке - 60...480 мг/кг, в молозиве - в 2,5 раза больше, в сухом молоке - 1500, в сыре - 500 мг/кг. Холин неустойчив к высоким температурам, при пастеризации потери достигают 15%. При производстве кисломолочных продуктов содержание холина увеличивается в простокваше на 37%, в кефире-в 2 раза.

Фолиевая кислота содержится в сыром молоке в количестве 0,5...2,6 мг/кг. Она синтезируется молочнокислыми бактериями, поэтому в кисломолочных продуктах содержание фолиевой кислоты увеличивается на 50%. В пастеризованном молоке фолиевой кислоты на 6...7% больше, чем в сыром (из-за высвобождения связанных форм витамина).

Жирорастворимые витамины включают витамины A, D, К, Е и F.

Витамин А (ретинол) образуется в печени животных из поступающего с кормами провитамина (^-каротина) под действием кароти- назы. При расщеплении одной молекулы каротина образуются две молекулы витамина А, который поступает сначала в кровь, а затем в молоко. Таким образом, содержание витамина А в молоке полностью зависит от содержания каротина в кормах.

В весенне-летний период с кормами поступает больше каротина, чем в осенне-зимний.

В сыром молоке содержится 0,15 мг/кг витамина А, в молозиве-в 5... 10 раз больше, в масле -4 мг/кг. В пастеризованном сухом молоке распылительной сушки и при хранении содержание витамина А снижается до 15%, а в кисломолочных продуктах -повышается до 33%.

Отсутствие витамина вызывает поражение глаз («куриная слепота») и сухость роговицы. Присутствие витамина А в рационе повышает сопротивляемость организма к инфекционным заболеваниям, способствует росту молодых животных и т.д. Суточная потребность человека в витамине А составляет 1,5...2,5 мг.

Витамин D (кальциферол) образуется под действием ультрафиолетовых лучей. В молоке его содержится в среднем 0,5 мг/кг; в молозиве-2,125 мг/кг в первые сутки и 1,2 мг/кг во вторые; в топленом масле- 2,0...8,5; в сладкосливочном масле (летом)-до 2,5 мг/кг. Пастбищное содержание коров увеличивает количество витамина D.

Витамин принимает участие в минеральном обмене, т.е. в обмене солей кальция. При продолжительном недостатке витамина D кости становятся мягкими, хрупкими, возникает рахит.

Витамин Е (токоферол) является антиокислителем в жире молока и способствует лучшему усвоению витамина А. Содержание в молоке зависит от его содержания в корме. В молоке оно составляет 0,6...1,23 мг/кг; в масле -3,4...4,1; в сухом молоке - 6,2; в молозиве-4,5; в сметане -3,0; в простокваше -0,6 мг/кг. При пастбищном содержании коров количество витамина Е увеличивается, при стойловом -уменьшается. К концу лактации содержание токоферола в молоке достигает 3,0 мг/кг. Длительное хранение молока при температуре ниже 10 °С приводит к снижению содержания витамина.

Витамин К синтезируется зелеными растениями и некоторыми микроорганизмами, по биологической активности сходен с витамином Е.

Витамин F нормализует жировой и водный обмены, предупреждает заболевания печени и дерматиты. В молоке его содержится примерно 1,6...2,0 мг/кг.

Ферменты. В молоке содержатся различные биологические катализаторы - ферменты, ускоряющие химические реакции и способствующие расщеплению крупных молекул пищевых веществ на более простые. Действие ферментов строго специфично. Они чувствительны к изменению температуры и реакции среды. В молоке присутствует более 20 истинных, или нативных, ферментов, а также ферменты, которые вырабатываются микроорганизмами, попадающими в молоко. Одна часть нативных ферментов образуется в клетках молочной железы (фосфотаза и др.), другая переходит из крови в молоко (пероксидаза, каталаза и др.) Содержание нативных ферментов в молоке постоянно, но их увеличение указывает на нарушение секреции. Количество ферментов, вырабатываемых бактериями, зависит от степени обсемененности молока.

Ферменты подразделяют на группы в зависимости от их специфического действия на различные субстраты: гидролазы и фосфори- лазы; ферменты расщепления; окислительно-восстановительные.

Изгидролаз и фосфорилаз для молочного дела наибольший интерес представляют липаза, фосфотаза, протеаза, карбоги- драза и др.

Липаза катализирует гидролиз триглицеридов молочного жира, при этом высвобождаются жирные кислоты. В молоке содержатся нативная и бактериальная липазы. Бактериальной липазы больше, нативной меньше.

Нативная липаза связана с казеином, а небольшая ее часть адсорбируется на поверхности оболочек жировых шариков. Молочный жир свежего молока обычно не подвергается самопроизвольному воздействию липазы.

Гидролиз жира под действием липазы называют липолизом. Липо- лиз молока происходит при механическом воздействии (гомогенизации, перекачивании молока насосом, сильном перемешивании, а также при замораживании и оттаивании, быстрой смене температуры).

Бактериальная липаза, обладающая высокой активностью, выделяется плесневыми грибками и бактериями, которые могут вызывать прогорклый вкус молока, масла и других продуктов.

Нативная липаза инактивируется при температуре пастеризации 80 °С, а бактериальная более устойчива к высоким температурам.

Протеаза - результат жизнедеятельности молочнокислых бактерий. Этот фермент активен при 37...42 °С, разрушается при 70 °С в течение 10 мин или при 90 °С в течение 5 мин. Много протеазы в сырах, которая образуется в них в процессе созревания. Она придает сырам характерные вкус и запах, но в молоке и масле может вызывать пороки вкуса.

Карбогидразы включают амилазу и лактазу. Амилаза вырабатывается клетками железистой ткани и из них попадает в молоко. Ее очень много в первых порциях молозива, и увеличивается количество амилазы при воспалении молочной железы. Фермент не устойчив к высоким температурам. При температуре 65 °С в течение 30 мин разрушается. Предполагают, что в молочной железе идет превращение гликогена в лактазу.

Фосфотаза синтезируется секреторными клетками вымени и некоторыми микроорганизмами молока. Она катализирует отщепление от фосфорных эфиров остатков фосфорной кислоты. В молоке присутствуют кислотная и щелочная фосфотазы. Последней больше, и она попадает в молоко из клеток молочной железы. Щелочная фосфотаза чувствительна к нагреванию, она полностью разрушается при нагревании молока до 74 °С и при экспозиции 15...20 с. Это свойство фосфотазы лежит в основе метода контроля эффективности пастеризации молока. Кислотная фосфотаза устойчива к нагреванию и разрушается при нагревании молока свыше 100 °С.

Из ферментов расщепления наибольший интерес для молочного дела представляет каталаза. В молоке она образуется из секреторных клеток молочной железы и в результате деятельности гнилостных бактерий. Молочнокислые бактерии каталазу не выделяют. При добавлении пероксида водорода она разлагается под действием каталазы на молекулярный кислород и воду.

Каталазу идентифицируют добавлением в молоко пероксида водорода.

Окислительно-восстановительные ферменты включают редуктазу и пероксидазу. С их помощью определяют качество молока и результаты пастеризации.

Редуктаза в отличие от других ферментов выделяется только микроорганизмами и является продуктом их жизнедеятельности. Молочная железа редуктазу не синтезирует. В асептическом молоке редуктаза не содержится, поэтому ее присутствие свидетельствует о бактериальной обсемененности продукта.

По редуктазной пробе оценивают качество молока. В свежевыдо- енном молоке микробов очень мало. По мере их накопления содержание редуктазы увеличивается. При добавлении в молоко окислительно-восстановительной краски (метиленовый синий или резазу- рин) она восстанавливается: чем больше в молоке фермента, тем быстрее оно обесцвечивается.

Пероксидаза вырабатывается молочной железой, ее используют для определения пастеризации молока.

Гормоны. Они необходимы для нормальной жизнедеятельности организма, а также для регулирования образования и выделения молока, в которое они попадают из крови.

Пролактин стимулирует выделение молока, вырабатывается передней долей гипофиза.

Лютеостерон затормаживает действие пролактина и выделение молока, является гормоном желтого тела, активизируется при глубокой стельности лактирующих животных.

Фолликулин стимулирует развитие железистой ткани вымени у первотелок и сухостойных коров, образуется в тканях яичника.

Тироксин - гормон щитовидной железы. Регулирует в организме жировой, белковый и углеводный обмены, содержит йод. В молоке присутствуют и другие гормоны: инсулин (гормон поджелудочной железы), адреналин (гормон надпочечников) и др.

Пигменты. К ним относятся каротиноиды, обеспечивающие кремовый цвет молока. Содержание их в молоке зависит от сезона года, кормов, породы коров.

Иммунные тела. К иммунным телам относятся агглютинины, антитоксины, оксонины, преципитины и др. В молозиве их содержится значительно больше, чем в молоке. От иммунных тел до некоторой степени зависят бактериальные и бактерицидные свойства молока. В молоке животных, перенесших какие-либо заболевания, содержится больше иммунных тел, чем в молоке здоровых. Содержание в молозиве иммунных тел обеспечивает теленку иммунитет.

Газы. В свежевыдоенном молоке содержатся газы, в том числе диоксид углерода, которые присутствуют в крови животных. Они легко адсорбируются во время дойки, обработки и хранения. Кислорода в молоке - 5.. Л 0%, азота - 20...30, диоксида углерода-55...70%. Последний растворяется в плазме и является одним из компонентов, обеспечивающих ее кислотность. В момент процеживания молока через фильтры содержание кислорода увеличивается до 25%, азота-до 50%, диоксида углерода - снижается до 25%. При нагревании количество газов в молоке уменьшается.

Пищевая ценность - основная характеристика пищевого продукта - количество содержащихся в нем пищевых веществ (белков, жиров и др.) и их соотношение.

Сырьем для производства молока служат натуральное молоко, обезжиренное молоко, сливки.

Натуральное молоко - это необезжиренное молоко без каких-либо добавок. Оно не поступает в реализацию, так как имеет нестандартизированное содержание жира и СОМО. Используется для выработки различных видов молока и молочных продуктов.

Обезжиренное молоко - обезжиренная часть молока, получаемая сепарированием и содержащая не более 0,05% жира.

Сливки - жировая часть молока, получаемая сепарированием .

Молоко является высокоценным в биологическом отношении продуктом питания, особенно для детей. В нем содержатся полноценные белки, жиры, фосфатиды, жирорастворимые витамины, минеральные соли. Всего в молоке обнаружено около 100 биологически важных веществ.

Химический состав молока следующий: белков 3,5%, жиров 3,4%, молочного сахара 4,6%, минеральных солей (золы) 0,75%, воды 87,8%. Химический состав молока колеблется в зависимости от породы животных, времени года, характера кормов, возраста животных, периода лактации, технологии переработки молока .

Белки молока легкодоступны для пищеварительных ферментов, а казеин обладает уникальным свойством, образуя в процессе переваривания гликополимакропептид, оказывать регулирующее влияние на повышение усвояемости других пищевых веществ.

Белки молока представлены казеином, альбумином и глобулином. Они являются полноценными и содержат все необходимые для организма аминокислоты. Казеин в молоке находится в виде казеиногена в связанном состоянии с кальцием. При скисании молока кальций отщепляется от казеина, который, свертываясь, выпадает в осадок.

Молочный жир в молоке находится в виде мельчайших жировых шариков величиной 0,1-10 мкм. При стоянии молока жировые шарики вследствие малого удельного веса поднимаются вверх, образуя слой сливок. Благодаря низкой температуре плавления (в пределах 28-36°С) и высокой дисперсности молочный жир усваивается на 94-96%. Как правило, содержание жира в молоке осенью, зимой и весной выше, чем летом. Оно возрастает также к концу лактационного периода. Большое значение при этом имеют условия содержания животного и характер корма. При хорошем уходе количество жира в молоке может достигать 6-7%.

Углеводы в молоке находятся в виде молочного сахара-лактозы, который менее сладок на вкус, чем растительный сахар, но по своей питательной ценности не уступает ему. При кипячении молочный сахар карамелизуется, придавая молоку буроватую окраску и специфический аромат и вкус. Молочный сахар имеет большое значение в производстве молочнокислых продуктов. Под действием молочнокислых бактерий он превращается в молочную кислоту; при этом свертывается казеин. Этот процесс наблюдается при производстве сметаны, простокваши, творога, кефира.

В состав молока входят фосфор, кальций, калий, натрий, железо, сера. Они находятся в молоке в легкоусвояемой форме, что имеет особенно важное значение в раннем детском возрасте, когда молоко является основным продуктом питания. Из микроэлементов в молоке содержатся цинк, медь, йод, фтор, марганец .

Основными витаминами молока являются витамины А и В, некоторые количества аскорбиновой кислоты, тиамина, рибофлавина, никотиновой кислоты. Содержание их подвержено значительным колебаниям. Летом, когда животные питаются сочными зелеными кормами, содержание витаминов в молоке повышается. Зимой в связи с переходом на сухие корма количество витаминов в молоке уменьшается. В дальнейшем содержание витаминов зависит от условий хранения, транспортировки и переработки молока.

В молоке имеется ряд ферментов. Основные из них: фосфатаза, пероксидаза, редуктаза, амилаза, липаза и каталаза .

Да, корова - это еще и мясо; но в первую очередь это все-таки молоко . Удивительное и бесценное произведение природы. Гиппократ справедливо сказал: «Молоко является почти совершенным продуктом питания». А академик И. П. Павлов написал так: «Между сортами человеческой еды в исключительном положении находится молоко - пища, приготовленная самой природой».

Зависит от содержания жира, белка, молочного сахара, витаминов, ферментов и других питательных веществ. В коровьем молоке содержится (в процентах) - сухого вещества - 12,5; жира - 3,8; общего белка - 3,3; молочного сахара - 4,7; минеральных солей - 0,8. Для сравнения: состав женского молока соответственно - 13,0; 3,5; 1,1; 7,5; 0,9.

Всего в молоке содержится около 200 различных компонентов. Весьма подробно о составе молока написал лауреат Государственной премии СССР писатель В.Чивилихин: «...Когда мы выпиваем стакан молока, твердо знаем только то, что оно вкусно и питательно, и вовсе не задумываемся о других его тонких свойствах или, тем более, о составе этого замечательного и ценного пищевого продукта. Общеизвестно, что есть в молоке жир, однако мало кто знает, что состоит он из множества разнообразных кислот - масляной, лауриновой, меристиновой, пальмитиновой, капроновой,каприловой, каприновой.

Производители молока обычно гонятся за жиром, и процентное содержание его служит главной характеристикой прородукта. Между тем, важнейшей полезнейшей частью молока является сочетание казеиновых, альбуминовых и глобулиновых белков, представляющих собою умопомрачительную по сложности комбинацию веществ, от одного даже неполного перечисления которых может заболеть голова: лейцин, пролин, валин, лизин, тирозин, аргинин, гистидин, триптофан, аланин, серин, глицин, метионин, цистин, треонин, изолейцин, гидроксипролин, фенилаланин, глютаминовая, аспарагиновая, додеканоалиновая, гидроксиглютаминовая и другие аминокислоты, делающие молочные белки главной питательной ценностью продукта. И секрет заключается в порядке соединения всех этих разных и сложных по составу веществ, малейшее нарушение которого дает совсем другие белки с другими свойствами или ничего не дает белкового.

В молекулярном белковом шифре кроется одна из величайших тайн жизни, и недаром ученые всего мира вот уже многие десятилетия, и пока безуспешно, бьются над созданием полноценного искусственного белка. Разумеется, рядовой потребитель молока не обязан знать все эти химические премудрости, мне хочется создать для него лишь общее представление о необыкновенной сложности столь привычного пищевого продукта.

В состав этой белой маслянистой жидкости входят, кроме вышеперечисленного, ферменты -диастаза, липаза, фосфотаза, протеиназа, пероклидаза, редуктаза, каталаза, минеральные соли, в том числе катионы: калий, натрий, кальций, магний, цинк, алюминий, медь, железо, марганец, йод, кремнезем, фтор, анионы, фосфаты, хлориды, сульфаты, нитраты, карбонаты; следы азотистых веществ - креатин и креатинин, ксантин и гипоксантин, холин, триметимин, метилгуамидин, мочевина, теоциновая и мочевая кислота, витамины, соли в коллоидной суспензии, газы - растворенный кислород, азот, и углекислый газ, занимающий в коровьем вымени десятую часть объема молока...» В молоке содержится лактоза, или молочный сахар.

Лактоза является одной из главных частей «сока жизни». Она участвует в питании мозга, развитии и росте центральной нервной системы человека.

Молоко - это идеальный корм для грудных детей, малышей-животных. Молоко необходимо человеку в любом возрасте. «Молоко и сыр, - пишет американский ученый Айзек Азимов, - главный источник ионов кальция в нашем питании. Вот почему молоко так нужно детям, у них растут кости, а ионы кальция - их важнейшая составная часть. Без кальция не могут обойтись и взрослые».

Шведский ученый Нильс Густавсон шутливо воскликнул: «Если вы в течение 1200 месяцев будете ежедневно выпивать по литру молока в день , считайте, что вам обеспечено 100 лет жизни!» Между прочим, долгожители это подтверждают.

Из молока делают масло, сметану, простоквашу, кефир, ацидофилин, ряженку и другие кисломолочные продукты, очень полезные для человека. В частности, они регулируют работу кишечника, подавляют жизнедеятельность гнилостных микробов. На этом принципе разработана теория И. И. Мечникова - продление жизни с помощью простокваши. В Индии и сейчас говорят: «Пей кислое молоко, и проживешь долго». Биологическая ценность молочного белка чрезвычайно велика. В нем имеется полный набор незаменимых аминокислот, причем в организме человека эти кислоты сами не образуются.

По количеству незаменимых аминокислот молоко превосходит все другие продукты питания. Суточная потребность человека в незаменимых аминокислотах и содержание их в молоке Потребляя в сутки 0,5 кг молока, человек получает общую энергию на 13% (при норме 2500-3000 ккал), протеина на 27%, кальция - на 75%, фосфора - на 66%, калия - на 33%, витаминов А и В2 - на 50%.

Необходимо указать, что в коровьем молоке соотношение белка и общей энергии находится в благоприятном для человека соотношении. И еще. Биологическая ценность белка молока намного превосходит ценность белка других продуктов животноводства. Основные питательные вещества молока - жир, белок и сахар - почти полностью усваиваются организмом человека, соответственно на 95, 96 и 98%. Для сведения: за 70 лет жизни человек потребляет в среднем более 2,5 т белков и около 2 т жиров. Потребность в жире человек в основном удовлетворяет, но что касается белка, то потребность в нем удовлетворяется лишь на 70%.

Московская компания «Стильная Мебель» (www.kuhnistyle.ru) специализируется на производстве и продаже мебели для дома:

  • Кухни на заказ – деревянные, пластиковые, стеклянные.
  • Обеденные зоны, столы и стулья.
  • Мягкая мебель – диваны, кресла, мягкие углы, кушетки, кровати, тахты.
  • Корпусные шкафы-купе, модельная мебель для прихожих, спален и гостиных.
  • Мебель для детской комнаты.

Услуги компании «Стильная Мебель» - выезд дизайнера, расчет стоимости мебели, изготовление нестандартной мебели на заказ, доставка, сборка.

Пищевая ценность молочных продуктов

Пищевая ценность молочных продуктов определяется содержанием белков, жиров, углеводов, витаминов, минеральных веществ, ферментов и ряда других биологически активных веществ.

Общее содержание белков в коровьем молоке может колебаться в пределах 3,0-3,9%, в среднем 3,2%. Они представляют собой смесь различных фракций с относительной молекулярной массой выше 10тыс. В основном различают две основные группы: казеин (фракции белка, которые выпадают при подкислении молока до рН 4,6) и сывороточные белки (фракции, которые при подкислении остаются в растворимом состоянии). Казеины (α, β, γ и другие фракции) составляют в среднем 79% общего содержания белка, остальное - сывороточные белки, среди которых преобладают β-лактоглобулины и α-лактоальбумины и иммуноглобулины. Казеин в молоке находится в виде сложного комплекса с солями кальция и фосфорной кислоты. Казеины и сывороточные белки несколько отличаются по аминокислотному составу. Так, глутаминовой кислоты несколько больше в казеине, чем в сывороточных белках. Такой важной незаменимой кислоты, как цистин, в сывороточных белках содержится значительно больше, чем в казеине.

В коровьем молоке отмечается только небольшой недостаток серосодержащих аминокислот (за счет цистина). Скор равен 94%.

Помимо белков в молоке содержится незначительное количество (4-10%) небелковых форм азота, в том числе около 2% свободных аминокислот. Наличие свободных аминокислот имеет важное значение в молочной промышленности при производстве молочнокислых изделий и сыров, так как они являются важным источником питания молочнокислых бактерий.

Молочный жир состоит в основном из триглицеридов (98,2-99,5% от общего содержания). Кроме того, в молочном жире содержатся фосфолипиды (лецитина - 0,08-0,4 %, кефалина – 0,07-0,4%, сфингомиелина - 0,1%), свободные жирные кислоты (0,02%), а также вещества сопутствующие жирам - стерины (в основном холестерин), жирорастворимые витамины, углеводороды.

В основном липиды молока представлены триглицеридами, замещенными насыщенными жирными кислотами (пальмитиновой, стеариновой и миристиновой), небольшим количеством мононенасыщенных жирных кислот (олеиновой) и следовым количеством полиненасыщенных.

Свободных жирных кислот в молочном жире немного. Однако при хранении молока под действием липаз происходит гидролиз триглицеридов и содержание свободных жирных кислот увеличивается, что неблагоприятно, так как низкомолекулярные жирные кислоты, например масляная, имеют неприятный запах и участвуют в образовании тона «прогорклости» у молочных продуктов.

Липиды молока находятся в виде стойкой жировой эмульсии, образованной жировыми шариками, которые состоят из липидов, белков минеральных веществ. Шарики в основном имеют размер 2-6 ммк.

Свободные жирные кислоты в нормальном стандартном молоко составляют меньше 1мэкв на 100г жира. В случае заражения молока микробами, обладающими липолитической активностью, содержание свободных жирных кислот повышается, а при концентрации более 2мэкв на 100г жира в молоке появляется прогорклый привкус.

Молочные продукты являются важным источником витаминов группы В и жирорастворимых. Главными из них является витамин В 2 (рибофлавин) и витамин А (включая и β-каротин). Следует отметить, что содержание витаминов в молоке и молочных продуктах сильно (больше, чем белки и жиры) зависит от сезона, вернее от кормления животных. Так, в летний период при кормлении зелеными кормами содержание витамина А и β-каротина может, увеличиваться по сравнению с зимним стойловым кормлением в 4 раза (пределы колебания 13-35мкг%), а витамина D - в 5-8 раз (пределы колебания 0,04-0,2мкг%). Из-за повышенного содержания β-каротина летнее молоко бывает слегка желтого цвета. Молоко и молочные продукты, к сожалению, бедны витамином С. В связи с этим в некоторых городах производится витаминизация питьевого молока витамином С.

Основным углеводом молока является лактоза, а основной органической кислотой - лимонная. Помимо перечисленных в молоке обнаружены (в количестве менее 10мг%) такие аминосахара, как D-глюкозамин, D-галактозамин, сиаловая кислота (до 20мг%), α, D –глюкуроновая кислота (до 100мг%), фосфаты сахаров (в сумме до 100мг%). Лактоза в молоке находится в α- (38%) и β- (62%) формах.

Важнейшими микроэлементами молока являются кальций и фосфор. Кальций и магний присутствуют в виде солей фосфорной и лимонной кислот. При этом большая часть фосфата кальция связана с казеином в виде казеинкальций-фосфатного комплекса. Фосфор частично (40%) находится в виде фосфатов, а в основном входит в состав казеинкальцийфосфатного комплекса и в состав белков.

Микроэлементы, в том числе цинк, железо, медь, связаны как с белками, так и с жировыми шариками. Соотношение между этими фракциями весьма непостоянно.

В молоке в настоящее время обнаружено более 100 ферментов, в том числе оксиредуктазы (дегидрогеназа, оксидаза, пероксидаза, пероксид-дисмутаза), трансферазы, гидролазы (эстераза, гликозидаза, протеаза), липазы, изомеразы и лигазы. Большая часть о. них имеет нативное происхождение и переходит в молоко из клеток молочной железы во время секреции (к ним относятся щелочная фосфатаза, ксантиноксидаза, протеаза и др.).

Большое количество ферментов образуется микроорганизмами, попадающими в молоко при доении, из оборудования, воздуха и др. Действие этих ферментов на качество молока всегда отрицательное. Поэтому допускается определенный минимум их активности.

Всем известна высокая биологическая ценность такого пищевого продукта, как молоко. Осбоенно полезно молоко для детей.

Молоко находится в числе пищевых рекордсменов по содержанию полноценных белков, жиров, фосфатидов, минеральных солей и жирорастворимые витаминов, а в общей сложности в молоке найдено примерно сто веществ, весьма важных с биологической точки зрения.

Химический состав молока

В цифрах химический состав молока, в зависимости от породы, кормов, времени года, возраста коров, периода лактации и технологии переработки продукта может выглядеть примерно так:

  • воды 87,8%,
  • жиров 3,4%,
  • белков 3,5%,
  • молочного сахара 4,6%,
  • минеральных солей 0,75%.

Важным является, что белки молока являются легким продуктом для пищеварительных ферментов, а уникальность казеина заключается в способности в процессе пищеварения образовывать гликополимакропептид, что повышает усвояемость других пищевых ингредиентов.

Химический состав молока кроме казеина содержит полноценные белки глобулин и альбумин , содержащими все аминокислоты, которые необходимы для организма. Казеин в молоке связан с кальцием и при скисании молока кальций проходит расщепление и казеин свертывается и выпадает в осадок.

При отстаивании молока мельчайшие жировые шарики, находящиеся в нем всплывают вверх, образуя слой вкуснейших и полезнейших сливок. Низкая (28-36 0 С) температура плавления этого продукта, а также высокая дисперсность делает возможной почти полную усвояемость молочного жира.

Пищевая ценность молока

Углеводы молока, это молочный сахар - лактоза, он не так сладок, как растительный сахар, однако совершенно не уступает ему в питательной ценности. При кипячении происходит карамелизация молочного сахара, отчего молоко приобретает буроватый цвет и особые аромат и вкус. Под воздействием молочнокислых бактерий молочный сахар становится молочной кислотой, а казеин при этом сворачивается. В результате получаются простокваша, сметана, кефир, творог – такие вкусные, питательные и полезные продукты. В составе молока имеются кальций, фосфор, калий, железо, натрий и сера, причем в легкоусвояемой форме, а это весьма важно для детского питания, когда основным продуктом в детском меню является именно молоко. В молоке также имеются микроэлементы медь, цинк, фтор, йод, марганец. Из-за химического состава молоко имеет важную пищевую ценность для организма человека.

Главным витаминным богатством и пищевая ценность молока – витамины А и D , но кроме них присутствуют аскорбиновая кислота, рибофлавин, тиамин и никотиновая кислота.

Ферменты молока

Кроме того, в молоке содержится и ряд ферментов, из которых следует выделить:

  • пероксидазу,
  • амилазу,
  • фосфатазу,
  • редуктазу,
  • каталазу,
  • липазу.

По ГОСТ 13277-67 свежее качественное молоко должно быть однородным жидким продуктом, белого цвета со слегка желтоватым оттенком, обладать приятным вкусом и запахом. Если отвлечься от возможных отклонений в качестве этого продукта, вызванных неприемлемыми изменениями в составе, например, присутствии различных вредных микроорганизмов, то его цвет и запах в значительной мере может зависеть от кормов и условий хранения.

Польза и вред свежого молока

Посторонний запах может возникнуть в молоке при хранении его рядом с веществами, для которых характерен резкий запах – рыбой, табаком, нефтепродуктами, в деревянных прогнивших подвалах.

Свежевыдоенное молоко – это далеко не стерильный продукт, поскольку в полости молочных желез вымени всегда присутствует некоторое количество микробов. Это, в основном, микрококки, но имеются и молочнокислые бактерии.

Кроме того, молоко – это питательная среда для микроорганизмов, которые попадают в него в процессе доения и позже. В молоке эти микроорганизмы быстро размножаются.

Вместе с подобной микрофлорой в молоке могут попадаться и патогенные микроорганизмы, такие, как возбудители кишечных инфекций.

Поэтому, по существующим санитарным правилам молоко допускается к применению лишь после обезвреживания.

В основном, для этого применяется метод пастеризации при температуре 70 0 С в течение получаса, либо нагрев не ниже 90 0 С на несколько секунд.