Тесто

Качество продовольственных товаров. Вкусовые предпочтения и вкусовое поведение карповых рыб исаева ольга михайловна

Качество продовольственных товаров. Вкусовые предпочтения и вкусовое поведение карповых рыб исаева ольга михайловна

Качество продукции - это совокупность свойств, обусловливающих пригодность удовлетворять определенные потребности в соответствии с ее назначением С улучшением качеста потребительная стоимость продукта повышается.

Особое место в товароведении продовольственных товаров занимает контроль качества, под которым понимают проверку соответствия показателей качества продуктов требованиям нормативно-технической документации. Контроль качества в торговле проводят при приемке, хранении и реализации товаров.

Объектом товароведного исследования является средняя проба, т. е. небольшое количество продукта, взятое для определения качества партии товара. Средняя проба по составу должна быть тождественна всей партии, от которой она отобрана. Техника отбора средней пробы указывается в стандартах на методы испытания.

Методы исследования пищевых продуктов по характеру и способам выполнения подразделяют на органолептические и лабораторные.

Органолептические методы исследования - это исследования свойств и качества продуктов, которые проводятся с помощью органов чувств. В процессе дегустации при помощи вкуса, обоняния, зрения и осязания определяются такие показатели качества товара, как вкус, запах, цвет (окраска), внешний вид, консистенция. Органы чувств человека реагируют на свойства продукта лишь в известных пределах, определяемых так называемым порогом ощущения. Так, человек ощущает соленый вкус, если на 10 мл раствора приходится не менее 0,05 г соли, а сладкий - при наличии 0,4 г сахара на тот же объем. Точно так же существуют пределы восприятия запаха, света, звука. Органолептический метод применяется в отношении самых разнообразных продуктов. Для оценки качества целого ряда продуктов этот метод имеет преимущественное значение (чай, кофе, вина и др.).

Важнейшими показателями качества продуктов являются вкус и запах. Вкусовые ощущения бывают четырех видов: кислое, сладкое, горькое и соленое. Могут возникать и такие вкусовые ощущения, как вяжущее и терпкое, освежающее и колючее. Чувствительность к основным вкусовым ощущениям уменьшается в такой последовательности: горький, кислый, сладкий и соленый. На вкусовую чувствительность влияет температура. Вкус продуктов надо определять при температуре, указанной в стандарте.

Вкусовые ощущения тесно связаны с обонятельными. Ощущения запаха могут вызвать только вещества, находящиеся в газообразном состоянии. Согласно последней классификации существует десять первичных запахов: мускусный, амбровый, кедровый, перечный, цветочный, миндальный, камфорный, эфирный фруктовый, фруктовый, спиртовой фруктовый. Орган обоняния человека еще более чувствителен, чем орган вкуса. Так, отталкивающий запах скатола ощущается уже при концентрации 0,0000004 мг/м 3 . Интенсивность запаха увеличивается при повышении температуры окружающей среды.

В определении качества пищевых продуктов важную роль играют зрительные ощущения. Форма, цвет, прозрачность, мутность продукта определяются с помощью органов зрения. Точно определить окраску очень трудно. В шкале цветов насчитывается более 100 тоновых их оттенков. При определении цвета часто применяют сопоставление испытуемого продукта с эталоном, имеющим нормальную для данного продукта окраску. Этим приемом повышается точность определения. Окраска является одним из основных критериев при установлении товарного сорта плодов и овощей.

Осязательными (тактильными) ощущениями определяют консистенцию, температуру, структуру продукта, степень его измельчения и др. Осязанием с помощью пальцев контролируют степень помола муки, упругость охлажденного мяса и др. С помощью органов осязания ротовой полости можно судить о консистенции, упругости, сочности и хрупкости продукта.

Органолептическая оценка очень важна и во многих случаях имеет решающее значение при определении качества пищевых продуктов. Преимущества органолептической оценки заключаются в доступности, отсутствии необходимости применять приборы и реактивы, возможности быстро составить общее представление о продукте и его качестве.

Иногда высказывается мнение, что органолептический метод является субъективным и данные его не совсем достоверны. Однако лабораторные методы исследования также носят определенные элементы субъективизма. Поэтому при определении качества исследуемого продукта эти методы должны дополнять друг друга.

Существует несколько видов органолептической оценки качества продуктов.

Самым распространенным видом органолептической оценки качества продуктов является балльная система. Сущность ее заключается в том, что важнейшие качественные признаки продукта оцениваются определенным количеством баллов в зависимости от значимости того или иного признака. У нас в стране приняты 10-, 30-, и 100-балльные системы. Важнейшими показателями являются вкус и запах продукта, на которые отводится 40-50 % всех баллов, а также цвет. Они определяются у всех продуктов. Существуют и специфические показатели, свойственные только определенному продукту: рисунок-для сыра, консистенция - для консервов, прозрачность - для пива и т. д. Например, коровье масло оценивается по 100-балльной системе, при этом вкусу и запаху отводится 50 баллов, внешнему виду и консистенции - 25, окраске - 5, посолке и упаковке- по 10 баллов. Общая балльная оценка масла высшего сорта составляет 88-100 баллов, 1-го сорта - 80-87 баллов. Масло с оценкой ниже 80 баллов относят к нестандартному.

Из других видов органолептической оценки можно назвать методы треугольных сравнений, разбавления, ранжирования, экспертный и социологический.

Лабораторные методы. Для выявления пищевого достоинства, химического состава и безвредности пищевых продуктов пользуются физическими, физико-химическими, химическими, биохимическими и микробиологическими методами исследования. Наиболее полную и верную оценку качества пищевых продуктов можно дать только в результате соединения органо-лептического и лабораторных методов исследования. К достоинствам лабораторных методов следует отнести точность результатов и возможность выражения их в количественных показателях.

Химическими и биохимическими методами пользуются для количественного и качественного определения отдельных веществ химического состава продуктов. Определение Сахаров, кислот, белков, витаминов, минеральных веществ и других составных веществ продуктов производят этими методами. В торговой практике часто пользуются химическими методами исследования при контроле качества пищевых продуктов на их натуральность, доброкачественность и соответствие стандартам.

Физические и физико-химические методы исследования имеют ряд преимуществ перед химическими благодаря своей быстроте и простоте. Этими методами определяют относительную плотность, температуру плавления, застывания и кипения, структурно-механические свойства, оптические показатели при помощи рефрактометрии, колориметрии, поляриметрии и др. Так, колориметрическим методом можно точно определить интенсивность окраски пищевых продуктов; поляриметрическим - содержание сахара в продуктах; рефрактометрическим - наличие сухих веществ в продуктах и т. д.

Микробиологический метод исследования играет важную роль при исследовании пищевых продуктов. Им выявляется степень микробного обсеменения, количество и вид микробов и плесневых грибов в продуктах питания, наличие бактерий, вызывающих отравления и заболевания. Этим методом в конечном итоге определяют пищевую безвредность продуктов.

У человека вкусовые луковицы расположены преимущественно на дорсальной по-верхности грибовидных, в желобках листовидных, канавках желобоватых сосочков языка, а также в значительно меньших количествах в слизистой неба, глотки, гортани, миндалин, небной занавески. Каждый грибовидный сосочек содержит 3-4 луковицы. У детей вкусовые луковицы распространены более широко, чем у взрослых, по твердому и мягкому небу, на гортани, надгортаннике, грибовидных сосочках середины спинки языка. У взрослого чело-века насчитывают 9-10 тысяч вкусовых луковиц. После 45 лет часть вкусовых луковиц атрофируется.

Зоны, чувствительные к каждому из этих раздражителей, пе-рекрывают друг друга, и любое вкусовое ощущение может быть вызвано с различных обла-стей языка. При этом, однако, приходится варьировать концентрации растворов. Так, ощу-щение сладкого с корня языка возникает при больших концентрациях, чем с его кончика.

Температура. Для большинства химических веществ не обнаружено простых отноше-ний между температурой тестируемого раствора и изменением абсолютного порога, однако, она существует. Например, для сахара чувствительность нарастает с повышением темпера-туры, но при 50о С полностью исчезает. При 0о С происходит резкое снижение чувствитель-ности ко всем вкусовым веществам.

Адаптация. Соприкосновение химических веществ со вкусовым рецептором в течение некоторого времени ведет к повышению абсолютного порога и снижению интенсивности вкусового ощущения. Время адаптции пропорционально концентрации раствора. Адаптация к сладким и соленым веществам происходит быстрее, чем к горьким и кислым. При исследовании перекрестной адаптации, т.е. влияния адаптации к одному веществу на изменение порогов к другим, показали, что она существует не для всех ве-ществ.



Так, если любая кислота снижает чувствительность ко всем кислотам, то для веществ, обладающих сладким вкусом, такая закономерность наблюдается не во всех случаях.

Адаптация к одному веществу может не только понижать, но и повышать чувствительность к другим веществам, что обозначается как явление вкусового контраста. Адаптация к сахару или к поваренной соли повышает чувствительность к соединениям, обладающим другими вкусовыми качествами. Адаптация к горькому (хинин) повышает чувствительность к кислому и соленому, но не сладкому.

Вкус смесей определяется химической специфичностью составляющих их веществ. Так, сладкий вкус фруктозы уменьшается в сочетании с молочной и уксусной кислотами, но не лимонной и соляной. Сладкий вкус сахарозы уменьшают лимонная и молочная, но не уксусная и соляная кислоты.

Теории вкусовой рецепции. Раскрытие механизмов, лежащих в основе вкусовой рецеп-ции, является весьма важным для создания теории вкуса. Прежде всего заслуживает упоми-нания гипотеза П.П. Лазарева. Он полагал, что под влиянием адекватных вкусовых раздра-жений происходит распад гипотетических высокочувствительных веществ белковой приро-ды, содержащихся во вкусовых луковицах, что приводит к специализированному раздраже-нию нервных окончаний ионизированными продуктами распада. Каждая луковица способна реагировать на все вкусовые вещества, но в значительно меньшей степени, чем на вещество одного вкусового качества

Ферментативная теория вкуса Баради и Бурна объясняет возникновение специфиче-ского вкусового ощущения активизацией определенных ферментов в клетках вкусовой лу-ковицы. Однако эта теория в дальнейшем подверглась критике.

Большое значение для понимания механизмов вкуса имели гипотезы, связывающие вкусовую рецепцию с мембранными процессами Согласно этой гипотезе, начальным этапом вкусовой рецепции является адсорбция молекулы вещества на специализированных участках белковой цепи, связанной с мембраной рецептора. Представление о наличии на апикальной поверхности мембраны вкусовой клетки специализированных активных центров, избирательно адсорбирующих вещества с различными вкусовыми качествами, доказано электрофизиологическими исследованиями Бейдлера. Кроме того, из гомогенатов эпителия языка были выделены белковые фракции образующие комплексные соединения одни с различными сахарами, другие – с горькими веществами.

Вместе с тем теория Бейдлера не может объяснить некоторые явления, связанные с вкусовой рецепцией, в частности, явление адаптации. Она отражает лишь явления, проис-ходящие в рецепторе на первом этапе действия вкусового раздражителя. В дальнейшем включаются нервные механизмы интеграции, общие для многих сенсорных систем.

Вкусовая чувствительность. Вкусовая чувствительность у людей различна, а у одного и того же человека может резко изменяться под влиянием многих факторов. Так, показано, что вкус к сладкому у женщин развит лучше, чем у мужчин. Наблюдается притупление вкусовых ощущений у курящих.

В нашей жизни вкус имеет немаловажное значение. Вместе с обонянием он помогает человеку определить качество пищи. Полость рта непосредственно сообщается с полостью носа, и поэтому вкусовые вещества могут легко воздействовать и на обонятельную систему. Вкусовые и обонятельные ощущения настолько тесно связаны между собой, что образуют неразрывный функциональный комплекс, благодаря которому многие больные с нарушени-ем обоняния жалуются больше на потерю вкуса, чем на отсутствие восприятия запахов. По этой же причине различные ароматические пищевые вещества и жидкости воздействуют на организм не только своими вкусовыми, но и обонятельными раздражениями. Например, сек-рет эффективности трускавкецкой нафтуси заключается не только в концентрации катионов и анионов, но и в ее сильных пахуче-вкусовых качествах.

Вкусовая чувствительность тесно взаимосвязана с уровнем общей чувствительности, в частности температурной, связь которой со вкусовым аппаратом широко известна в обыден-ной жизни. Вкус многих пищевых веществ находится в строгой зависимости от их темпера-туры. Наиболее благоприятной для потребления считается пища, температура которой +24о С. Для утоления жажды лучше пить холодную воду с температурой ниже температуры поло-сти рта.

Вопрос о соответствии между вкусом и потребностями организма в пище изучался мно-гими исследователями. Доказано, что острота вкуса уменьшается непосредственно после насыщения, а спустя 1-1,5 часа вновь восстанавливается до прежнего уровня. У каждого че-ловека по мере развития чувства голода чувствительность к сладкому заметно повышается, к кислому и горькому несколько понижается. Считается общепризнанным, что вкусовая чув-ствительность уменьшается в темноте, в условиях кислородной недостаточности, при низкой и высокой температуре пищи, при низкой и высокой температуре окружающей среды.

Частым симптомом заболеваний желудка (и не только желудка) является обложенный язык и потеря аппетита (анорексия). И.П. Павлов называл это защитным «самоисцеляю-щим» рефлексом, поскольку отказ больного от приема пищи создает для пораженного же-лудка необходимые условия покоя. Отсюда следует, что любой налет на языке и сопровож-дающая его анорексия есть мера адаптации и превентивной терапии. Мера, которую нужно не только понимать, но и всячески поддерживать (П. Н. Снякин). Клинический опыт показывает, что насильственное кормление больных с блокированной вкусовой рецепцией и, следовательно, с пониженным или отсутствующим аппетитом, ничего, кроме осложнения, принести не может.

Вкусовые ощущения могут возникать не только под влиянием адекватных, химических раздражителей, но и в результате неадекватных воздействий: механических, термических и электрических. Так, при сильном сдавливании кончика языка появляется щелочной вкус. При постукивании по боковой поверхности языка у некоторых лиц возникает ощущение соленого вкуса, а при надавливании сухим пальцем на основание языка – ощущение горечи. Контакт языка с электродами электрической батарейки вызывает ощущение кислого вкуса.

Воздействие на вкусовые рецепторы вызывает сдвиги в состоянии многих систем орга-низма: изменяется работоспособность, обмен веществ, половая деятельность, сосудистый тонус. Так, кислые и горькие растворы уменьшают кровоток конечностей, увеличивают кро-воток мозга, снижают кожную температуру, вызывают учащение пульса и повышение кро-вяного давления. Сладкие вещества вызывают увеличение кровотока конечностей, уменьше-ние кровотока мозга и повышение кожной температуры, т.е. действуют противоположно кислым и горьким раздражителям. Интенсивный соленый раздражитель чаще всего вызывает расширение мозговых и периферических сосудов. Это значит, что все люди с грубой церебральной патологией должны исключить из своего рациона острые пищевые продукты.

По мнению О.А. Наумовой, жевание ароматической жевательной резинки, воздействуя на вкусовые рецепторы, оказывает тонизирующее влияние на организм.

Изменение вкуса отмечается довольно часто: при инфекционных и желудочно-кишечных заболеваниях, при заболеваниях ротовой полости и полости носа, при органических поражениях головного мозга, при наркомании и длительном приеме различных лекарственных препаратов. Психиатрам известно, что на ранних стадиях шизофрении многие больные жалуются на неприятный вкус или безвкусность пищи. С патологией вкусового анализатора у таких больных, по-видимому, связаны частичный или полный отказ от пищи, а также бредовые идеи отравления и отдельные варианты ипохондрического бреда.

Феномен понижения и извращения вкуса встречается у 0,5 % всех больных. Боль-ные с понижением вкусовой чувствительности обычно страдают также снижением обоняния и аппетита. Они, как правило, худеют и долго, но не всегда успешно, лечатся. Для некоторых из них прием пищи нередко превращается в мучительное испытание из-за того, что пищевые продукты приобретают скверный, порою зловонный запах и вкус. Показано, что такие состояния могут быть связаны со снижением в организме меди и цинка, и в этих случаях хорошо помогают пилюли, содержащие сульфат цинка.

114. Методы изучения функции механической обработки пищи в полости рта. См.

С помощью вкусовой системы оценивают вкус продуктов – комплекс ощущений, воспринимаемых при их опробовании, дегустации (оценка пищевого продукта в полости рта).

Вкус чувство, возникающее при возбуждении вкусовых рецепторов и определяемое как качественно, так и количественно.

Оценка вкуса сводится к определению вида вкуса и его интенсивности. Эталонами первичных вкусовых веществ в товароведении принято считать, соответственно: сладкий сахароза; кислый соляная кислота; соленый поваренная соль; горький хинин (кофеин). Все остальные виды и оттенки вкуса можно получить, смешивая в необходимых пропорциях три из четырех возможных первичных вкусов.

Качественное определение вкуса вызвано воздействием веществ на вкусовые луковицы, которые находятся преимущественно на языке. Кроме того, они найдены на слизистой поверхности ротовой полости, стенок глотки, миндалин, гортани. Общее количество вкусовых луковиц в полости рта человека достигает 9 тыс. Кроме того, определение вкуса связано с осязанием пищи в ротовой полости.

Вкусовой аппарат рта человека является химическим анализатором, причем более чувствительным, чем современные приборы. Все богатство разнообразных оттенков, сочетаний вкусовых ощущений возникает в результате раздражения особых органов чувств вкусовых луковиц (почек), каждая из которых состоит из нескольких чувствительных хеморецепторных клеток, соединенных с сенсорными нейронами. Хеморецепторные клетки реагируют на определенные химические вещества.

Вкусовые луковицы дифференцированы к восприятию основных видов вкуса: сладкого, соленого, кислого и горького. Луковицы, находящиеся на кончике языка, наиболее чувствительны к сладкому вкусу, у краев передней части языка – к соленому, у краев задней части языка к кислому, у основания к горькому.

Все вещества, обуславливающие вкус пищевых продуктов, растворимы в воде. Только в растворенном виде они могут воздействовать на химические анализаторы вкусового аппарата.

Порог ощущения зависит и от температуры раствора, что, вероятно, объясняется изменением состояния молекулы белков вкусовых почек. Наилучшее восприятие вкусовых веществ происходит при температуре растворов, близкой к температуре тела человека (36,5 °С). Горячие растворы тех же веществ в указанных концентрациях кажутся безвкусными, т. е. не вызывают никаких ощущений. При охлаждении до температуры 30 °С сладкий вкус проявляется скорее, чем соленый или горький.

При оценке вкуса имеет значение и быстрота вкусового ощущения: быстрее всех воспринимается соленый вкус, медленнее -- сладкий и кислый. Горький вкус воспринимается наиболее медленно.


Выделяют нижеследующие характеристики вкуса.

Кислый вкус-- характеризует основной вкус, свойственный водным растворам большинства кислот (например, лимонная и винная кислоты); комплексное обонятельно-вкусовое ощущение, вызываемое преимущественно присутствием органических кислот.

Кислость органолептическое свойство индивидуальных веществ или смесей, которое вызывает кислый вкус.

Кисловатый вкус -- характеризует меньшую степень интенсивности вкуса кислого продукта.

Горькийвкус -- характеризует основной вкус, вызываемый водными растворами таких химических веществ, как хинин и кофеин, а также некоторыми алкалоидами.

Горечь органолептическое свойство индивидуальных веществ или смесей, вызывающих горький вкус.

Соленыйвкус -- характеризует основной вкус, вызываемый водными растворами химических веществ, таких как хлорид натрия.

Соленость органолептическое свойство индивидуальных веществ или смесей, вызывающих соленый вкус.

Сладкий вкус -- характеризует основной вкус, вызываемый водными растворами таких химических веществ, как сахароза.

Сладость органолептическое свойство индивидуальных веществ или смесей, вызывающих сладкий вкус.

Щелочной вкус --характеризует основной вкус, вызываемый водными растворами таких химических веществ, как бикарбонат натрия.

Щелочность органолептическое свойство индивидуальных веществ или смесей, вызывающих щелочной вкус.

Вяжущий, терпкийвкус -- характеризует комплексное ощущение, вызываемое сокращением слизистых поверхностей ротовой полости и возникающее от воздействия таких веществ, как танины. Терпкость органолептическое свойство индивидуальных веществ или смесей, вызывающих вяжущий вкус.

Металлическийвкус -- характеризует основной вкус, вызываемый водными растворами таких химических веществ, как сульфат железа.

Безвкусный, пресныйвкус продукт, не имеющий характерного вкуса.

Послевкусие вкусовое ощущение, появляющееся после проглатывания или удаления продукта из полости рта, которое отличается от тех ощущений, которые воспринимались во время его нахождения в ротовой полости.

Пищевые продукты имеют либо какой-то один вкус (сахар сладкий, поваренная соль соленый, кислоты кислый), либо отличаются сочетанием основных видов вкуса. В этом случае можно говорить о гармоничноми негармоничном сочетании вкуса. Так, гармонично , как единое целое сочетаются сладкий или соленый вкус с кислым или горьким. Примером могут служить сладко-кислый вкус плодов, кондитерских изделий, сладко-горький вкус шоколада, кисло-соленые квашеные овощи, солено-горькие маслины. Негармоничными считаются такие сочетания, как солено-сладкий, горько-кислый. Эти сочетания воспринимаются как два разных вкуса, они несвойственны пищевым продуктам, встречаются редко и возникают, как правило, вследствие порчи (например, горько-кислый вкус квашеных овощей).

Восприятие вкуса зависит от химического состава, вязкости и количества пищи; природы пахучих и вкусовых веществ и интенсивности освобождения, скорости удаления, характера их воздействия на орган вкуса; доступности этих веществ в определенный период; условий приема пищи (в частности, дыхания, количества и скорости потока слюны, продолжительности, температуры) и качества пережевывания продукта.

Установлено, что на оценку интенсивности основных вкусов можно воздействовать цветом продукта. Так, желтый и светло-зеленый цвета увеличивают оценку интенсивности кислотности продукта, а красный цвет усиливает оценку интенсивности сладости по сравнению с бесцветным. Следует также учитывать моменты подавления одного вкуса другим. Например, кислый вкус подавляется сладким, а в меньшей степени соленым и горьким. Соленый и горький вкусы подавляются определенными концентрациями сахарозы и лимонной кислоты; сладкий вкус слабо подавляется небольшими концентрациями лимонной кислоты.

Вкус, cохранившийся несмотря на прекращение импульса, вызвавшего его, называется вторичным вкусом . Он может быть одинаковым и контрастным. Одинаковым он является потому, что после прекращения вкусового импульса остается вкусовое ощущение, идентичное по своему качеству тому, которое было во время воздействия вкусового импульса. Контрастным называется вторичный вкус, который возникает после снятия действующего вкусового импульса.

Все пищевые продукты вызывают ощущение определенного вторичного вкуса, одинакового или контрастного. Если вторичный вкус одинаков и совпадает с главным профилем вкусности продукта и быстро исчезает при проглатывании куска этого продукта, это доказывает, что качество продукта высокое. Но если после проглатывания во рту сохраняется вторичный вкус, то продукт по потребительской ценности уступает первому. В практике органолептического анализа очень часто встречается вторичный контрастный вкус, например, дистиллированная вода после полоскания рта раствором поваренной соли кажется сладковатой. После кратковременного опробывания сладкого вкуса кислый вкус воспринимается более остро, и неприятное ощущение при этом усиливается. Поэтому выдержанные вина не оцениваются после оценки сладких вин; не оценивают малосольные изделия после оценки продуктов, посоленных сухим способом.

Вкусность (флейвор flavour ) – комплексное ощущение в полости рта, вызываемое вкусом, запахом и текстурой пищевого продукта, определяемое (оцениваемое) как качественно, так и количественно.

На вкусность могут оказывать воздействие тактильные, термические, болевые и/или кинестезические ощущения.

Оценка качества пищевого продукта на основе комплексного восприятия и анализа оптических, обонятельных, тактильных, вкусовых, акустических и других импульсов (стимулов) называется оценкой вкусности или флейвора в отличие от его вкуса.

Количественные изменения отдельных составляющих вкусности в определенный момент приводят к качественному скачку и в результате образуется продукт высокого качества, обладающий гармоничным или полным вкусовым достоинством. С течением времени баланс между отдельными составляющими вкусности нарушается и это приводит к ухудшению качества продукта. Примером может служить процесс созревания, старения и отмирания вина.

При оценке вкуса необходимо учитывать такие явления, обусловленные физиологическими особенностями органов чувств, как адаптация и усталость.

Адаптация это снижение впечатлительности органа вкуса, вызванное продолжительным воздействием вкусового импульса одинакового качества и неизменной интенсивности. При опробовании большого количества проб с одинаковым вкусом, одной интенсивности адаптация является причиной возникновения искаженных результатов. Органам вкуса в противоположность зрению и аналогично обонянию присуща быстрая адаптация.

Усталость – снижает восприятие вкуса вследствие утомляемости вкусовых рецепторов под влиянием повторяющегося импульса. Она наступает по истечении различного времени в зависимости от свойств продукта, физиолого-психологического состояния испытателей, натренированности, условий труда.

Настоящее изобретение относится к способу получения усилителя вкусовой привлекательности для использования в кормах для домашних животных с низким, средним и высоким содержанием влаги. Способ включает: (i) проведения реакции субстрата с, по меньшей мере, одной протеазой в отсутствие какой-либо добавленной липазы, причем субстрат содержит белковые и жировые материалы, (ii) тепловой инактивации указанной протеазы и фильтрования полученного продукта расщепления; г) проведение реакции полученной эмульсии с, по меньшей мере, одной липазой в отсутствие какой-либо добавленной протеазы, с получением продукта реакции второй стадии: д) добавление к указанному продукту реакции второй стадии, по меньшей мере, одного редуцирующего сахара и, по меньшей мере, одного соединения азота и нагревание полученной смеси. 7 н. и 7 з.п. ф-лы, 6 ил., 12 табл., 5 пр.

Рисунки к патенту РФ 2476082

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу усиления вкусовой привлекательности композиций (в том числе кормов, добавок, приправ, игрушек и тому подобного) для животных-компаньонов. В частности, изобретение относится к способу приготовления усилителя вкусовой привлекательности для применения в кормах для домашних животных с низкой, средней или высокой влажностью.

Изобретение относится к сфере кормов для домашних животных, таких как собаки и кошки. Подразумевается, что все имеющиеся здесь ссылки на корм любого вида относятся только к корму, который производится и продается для домашних животных, таких как собаки и кошки. Хотя к настоящему времени испытания ограничивались только собаками и кошками, изобретение может быть также приспособлено для использования у грызунов и других видов домашних животных. При необходимости раскрытое здесь изобретение может быть также испытано для определения его применимости для использования у различных классов животных, в том числе грызунов (таких как: хомяков, морских свинок, кроликов и подобных им), птиц, а также лошадей и любых типов домашнего скота. Однако поскольку собаки и кошки обнаруживают более высокую степень чувствительности к привкусу, вкусу и аромату, чем грызуны, лошади, домашний скот и т.д., и поскольку в основном собаки и кошки получают корм с улучшенным вкусом, используемый в настоящем тексте термин «домашние животные» будет относиться ко всем животным, которые, по-видимому, получают корм с улучшенным вкусом, как он раскрыт здесь, а термин «корм для животных» будет относиться ко всем типам корма, предлагаемого этим животным.

Следует понимать, что выражение «корм для животных», как оно использовано здесь, включает корма, имеющие низкое, среднее или высокое содержание влаги. Существуют три категории кормов для животных: (1) сухие продукты или продукты с низким содержанием влаги (обычно менее 15%), которые обычно имеют высокое содержание питательных веществ, более дешевую упаковку, более удобны в обращении, но имеют более низкую вкусовую привлекательность; (2) консервированные или влажные продукты или продукты с высоким содержанием влаги (больше, чем приблизительно 50%), которые обычно имеют наибольшую вкусовую привлекательность для домашних животных; (3) наполовину влажные или полусухие продукты или продукты с промежуточным или средним содержанием влаги (обычно от 15% до 50%;), которые обычно обладают меньшей вкусовой привлекательностью, чем консервированные корма, но большей вкусовой привлекательностью, чем сухие корма.

Предшествующий уровень техники

Заботливые хозяева предоставляют домашним животным подходящий выбор кормов. Эти корма могут быть обычным рационом и могут включать их обычный рацион, добавки, дополнительные обработки и игрушки. Домашние животные, подобно людям, предпочитают и чаще и охотнее едят корм, обладающий для них вкусовой привлекательностью. Поэтому усилители вкусовой привлекательности чрезвычайно важны для потребления животными. Корма для животных - такие, как корма для домашних животных, обычно содержат ароматизирующие композиции для повышения их аппетитности и привлекательности для домашних животных. К настоящему времени описано большое число ароматизирующих композиций (усилителей вкусовой привлекательности или факторов аппетитности). Например, в патентах США № 3857968 и 3968255 Haas and Lugay раскрывают улучшающую вкусовую привлекательность композицию для использования в сухих кормах для животных, особенно в сухих кормах для собак, содержащую жир и белки, которую получают способом, включающим эмульгирование жира, обработку композиции смесью ферментов, содержащей липазу и протеазу, и, по усмотрению, инактивацию ферментов. Другой пример описан в патенте США № 4713250, в котором композицию, усиливающую вкусовую привлекательность корма для собак, получают многостадийной ферментативной реакцией, включающей, во-первых, контактирование водного белкового или мучнистого материала с протеазой и/или амилазой, затем приготовление эмульсии, содержащей жир и полученный на первой стадии продукт, и проведение реакции указанной эмульсии с липазой и протеазой. Следующий пример описан в патенте США № 4089978, где Lugay et al. предлагают композицию с улучшенной вкусовой привлекательностью для использования в корме животных, которую готовят способом, включающим проведение реакции при умеренной температуре водной смеси редуцирующего сахара, крови животных, дрожжей и жира с ферментной смесью, содержащей липазу и протеазу, с последующим повышением температуры для более полного формирования привкуса и инактивации ферментов.

Однако вкусовая привлекательность таких композиций в основном различается для разных видов животных. Например, эффективный для кошек ароматизатор (вкусо-ароматический агент) часто неэффективен для собак. Более того, ароматизатор, эффективный в сухих кормах для домашних животных, обычно неэффективен в полувлажных или влажных кормах для домашних животных. Поэтому имеется постоянная потребность в новых усилителях вкусовой привлекательности, которые обеспечивают устойчивый привкус и которые могут легко и эффективно использоваться для домашних животных, включая собак и кошек, в таких различных типах кормов, как сухие, промежуточные и влажные корма.

Сущность изобретения

Таким образом, цель настоящего изобретения состоит в том, чтобы предоставить такой «общеприменимый» усилитель вкусовой привлекательности, то есть усилитель вкусовой привлекательности, который эффективен вне зависимости от вида животных и типа корма. Способ согласно настоящему изобретению обеспечивает значительное усиление вкусовой привлекательности кормов для домашних животных с низким, средним или высоким содержанием влаги.

Таким образом, представлен способ получения усилителя вкусовой привлекательности. Этот способ включает стадийный ферментативный гидролиз, за которым следует создающая привкус термическая реакция сырья (например, домашней птицы, свинины, говядины, баранины, рыбных продуктов и тому подобного) для получения высокоэффективного усилителя вкусовой привлекательности. Усилитель вкусовой привлекательности может быть добавлен в корм для домашних животных в виде жидкого продукта путем покрывающего опрыскивания, в виде сухого порошка в процессе покрывающего напыления или же в виде жидкого или сухого продукта путем смешивания его с ингредиентами корма для домашних животных перед расфасовкой или консервированием. В качестве альтернативы, усилитель вкусовой привлекательности может быть смешан с жиром и добавлен одновременно.

Настоящее изобретение рассматривает также комбинирование двух или более усилителей вкусовой привлекательности, в том числе одного такого, как раскрыто здесь, для получения композиций или смесей, полезных для усиления вкусовой привлекательности кормов для домашних животных. Различные типы усилителей вкусовой привлекательности можно смешать вместе перед их введением в корм (смеси усилителей вкусовой привлекательности можно так хранить до их использования). В качестве альтернативы, различные усилители вкусовой привлекательности можно комбинировать in situ, то есть прямо в корме для домашних животных.

Неожиданно обнаружено, что усилитель вкусовой привлекательности согласно настоящему изобретению - первый, который обладает высокой привлекательностью для домашних животных, преимущественно собак и кошек, когда он добавлен к корму для домашних животных, имеющему низкое, среднее или высокое содержание влаги.

Краткое описание фигур

Фиг.1: график, показывающий результаты определения вкусовой привлекательности усилителя вкусовой привлекательности SP1 фирмы Super Premium по сравнению с SP2 (пример 1).

Фиг.2: набор графиков, показывающих результаты определения вкусовой привлекательности усилителей вкусовой привлекательности XLHM в сравнении с продуктами фирмы Super Premium SP1 и SP2 (примеры 1 и 2).

Фиг.3: график, показывающий результаты определения вкусовой привлекательности усилителя вкусовой привлекательности фирмы Super Premium PRODUCT В в сравнении с PRODUCT С (пример 5).

Детальное описание изобретения

Термин «вкусовая привлекательность» означает относительную предпочтительность для животного одной пищевой композиции перед другой. Вкусовая привлекательность может быть определена по стандартной процедуре испытаний, в которой животное имеет равный доступ к обеим композициям. Такое предпочтение может возникать на основании любого из чувств животного, но обычно связано со вкусом, запахом, привкусом, структурой, ощущением во рту. Здесь определено, что корм для домашних животных, имеющий повышенную вкусовую привлекательность, - это такой корм, который животное предпочитает контрольной композиции.

Термины «усилители вкусовой привлекательности» или «вкусовые добавки», или «ароматизаторы» (корригенты, вкусоароматические добавки), или «факторы вкусовой привлекательности», или «факторы аппетитности» обозначают любой материал, который усиливает вкусовую привлекательность кормовой композиции для животного. Усилителем вкусовой привлекательности может быть одиночный материал или смесь материалов, и это могут быть природные, обработанные или необработанные, синтетические или же частично природные и частично синтетические материалы.

Используемый здесь термин «ломтик» («kibble») относится к конкретным ломтикам или кусочкам, полученным в процессе отжимания или выдавливания. Обычно ломтики делают для получения сухого и полуувлажненного корма для домашних животных. Кусочки могут различаться по размеру и форме, в зависимости от процесса или оборудования. Используемый здесь термин «хлебец» («loaf») относится к съедобным пищевым продуктам, получаемым в виде влажных продуктов, и включает терринс (terrines), паштеты, муссы и подобное им. В более общем смысле термин «корм для домашних животных» охватывает все формы кормов, в том числе ломтики и хлебцы, как они определены выше, которые пригодны для поедания домашними животными.

Как хорошо известно в данной области, «протеаза» - это фермент, который проводящий протеолиз, то есть запускает катаболизм белка путем гидролиза пептидных связей, соединяющих вместе аминокислоты в полипептидной цепи. Липаза - это водорастворимый фермент, который катализирует гидролиз эфирных связей в водонерастворимых липидных субстратах. Важно то, что поскольку липазы являются белками, они могут по крайней мере частично гидролизоваться протеазами, когда липазы и протеазы используют в качестве ферментной смеси, как раскрыто в предшествующих исследованиях. Это побочная реакция, на исключение которой нацелено настоящее изобретение.

Термины «жир» и «масло», как они использованы здесь, являются синонимами и охватывают также смеси жиров или масел. Можно использовать животные жиры, а также растительные и/или морские масла. Могут быть испытаны любые коммерчески доступные источники животного, растительного, морского жира. Растительные масла, которые доступны в больших количествах, - это обычно рапсовое масло, соевое масло, кукурузное масло, оливковое масло, подсолнечное масло, масло семян льна, пальмовое масло, шафранное масло и подобные им, а также их побочные продукты. Типичными животными жирами являются сало, лярд, птичий жир и подобные им, а также их побочные продукты. Морские масла - это обычно масло тунца, масло сардины, масло лосося, масло анчоусов, рыбий жир и подобные им, а также их побочные продукты. Здесь охвачены также жиры, получаемые из животных, растительных, морских источников, или продуцируются (производятся) животными и растениями.

«Термическая реакция» - это, согласно настоящему изобретению, реакция, получаемая комбинированием при повышенной температуре по меньшей мере одного углевода, предпочтительно редуцирующего сахара, и по меньшей мере одного соединения азота. Такая реакция может в действительности включать различные сопутствующие и/или последовательные реакции, в том числе, например, реакцию Мэйлора. Возможно, чтобы имело место сложное сочетание реакций, в зависимости от используемых условий. Предпочтительно, чтобы «редуцирующий сахар» был выбран их гексоз, пентоз, глюкозы, фруктозы, ксилозы, рибозы, арабинозы, гидролизатов крахмала и подобных им, а также их комбинаций. Термин «соединение азота», как он использован здесь, охватывает двадцать известных природных аминокислот, а также аминоацильные последовательности, то есть пептиды, олигопептиды и белки или полипептиды. Включены также все соединения, содержащие азот любого происхождения, приемлемые для использования в корме для домашних животных. Подходящие соединения азота выбраны из тиамина, метионина, цистина, цистеина, глутатиона, гидролизованных растительных белков (ГРБ), дрожжевых автолизатов, дрожжевых экстрактов и их комбинаций. Конечно, термин «соединение азота» охватывает любые соединения азота, содержащие серу, которые приемлемы для использования в корме для домашних животных, - такие, как содержащие серу аминокислоты.

Первый аспект настоящего изобретения относится к способу получения усилителя вкусовой привлекательности для использования в кормах для домашних животных, включающий по меньше мере:

а) предоставление продукта реакции первой стадии, получаемого путем:

(i) проведения реакции по меньшей мере с одной экзогенной и/или эндогенной протеазой в отсутствие какой-либо добавленной (или экзогенной) липазы, причем субстрат содержит белковые и жировые материалы в количествах, при условиях рН и температуры и за время, эффективные для осуществления протеолитической реакции,

(ii) тепловой инактивации указанной протеазы и фильтрования полученного продукта расщепления;

б) по усмотрению добавление жира;

в) эмульгирование указанного продукта реакции первой стадии;

г) проведение реакции указанной эмульсии по меньшей мере с одной липазой в отсутствие какой-либо добавленной протеазы, в количествах, при условиях рН и температуры и за время, эффективные для осуществления липолитической реакции, чтобы получить продукт реакции второй стадии.

После этапа (а) (ii), где протеаза (протеазы) была (были) инактивированы теплом, полезно также охладить полученный продукт, например, до температуры от приблизительно 20°С до приблизительно 50°С (предпочтительно от приблизительно 25°С до приблизительно 45°С), чтобы смесь находилась при температуре, эффективной для проведения последующей липолитической реакции, как предлагается в этапе (г). Например, это охлаждение полезно провести непосредственно после этапа (а) (ii) и температура будет затем поддерживаться одинаковой в этапах (б), (в) и (г).

Желательно, чтобы продукт реакции первой стадии был приготовлен и хранился при подходящих условиях до последующего использования. Этот продукт реакции первой стадии может быть также удобным образом получен из коммерческого источника, если только коммерческий перевар был получен после одной лишь протеолитической реакции.

Существенной особенностью настоящего изобретения является схема последовательных реакций, состоящая вначале из использования протеазы, а затем из использования липазы. Действительно, эта стадийная ферментативная обработка обеспечивает повышение не только эффективности и скорости реакции, но также и степень усиления вкусовой привлекательности продукта. Кроме того, неожиданное преимущество получаемого усилителя вкусовой привлекательности состоит в том, что он может очень широко использоваться в таких сильно различающихся кормах, как сухие, полусухие и влажные корма, предназначенные для домашних животных, в том числе по меньшей мере кошек и собак.

Добавление жира на этапе (б) факультативно, но предпочтительно осуществляется для получения лучших результатов.

Протеазы могут иметься в исходном субстрате, содержащем белковые и жировые материалы. Поэтому добавление протеаз в этапе (i) необязательно. Тем не менее, для лучших результатов предпочтительно добавлять в этапе (а) (i) по меньшей мере одну протеазу.

Второй аспект настоящего изобретения относится к усилителю вкусовой привлекательности, предназначенному для использования в кормах для домашних животных, который может быть получен способом, описанным выше.

Усилитель вкусовой привлекательности согласно настоящему изобретению может быть в форме жидкости (например, раствора) или сухого вещества (например, порошка).

Третий аспект настоящего изобретения относится к повышающей аппетитность композиции, предназначенной для использования в кормах для домашних животных, которая содержит по меньшей мере один усилитель вкусовой привлекательности, как он описан выше.

В качестве альтернативы, указанная повышающая аппетитность композиция содержит два или более усилителей вкусовой привлекательности, при этом по меньшей мере один из них - это усилитель вкусовой привлекательности согласно настоящему изобретению.

Четвертый аспект настоящего изобретения относится к способу приготовления корма для домашних животных, обладающего повышенной вкусовой привлекательностью, включающий по меньшей мере: введение по меньшей мере одного усилителя вкусовой привлекательности или по меньшей мере одной повышающей аппетитность композиции, как они раскрыты выше, в количестве, эффективном для повышения вкусовой привлекательности указанного корма для домашних животных.

Введение усилителя вкусовой привлекательности может быть осуществлено путем покрытия (например, опрыскиванием или распылением) или путем добавления к основной массе корма для домашних животных.

Пятый аспект настоящего изобретения касается корма для домашних животных, имеющего повышенную вкусовую привлекательность, получаемую описанным выше способом.

Настоящее изобретение охватывает также обладающий повышенной вкусовой привлекательностью корм для домашних животных, содержащий по меньшей мере один усилитель вкусовой привлекательности или по меньшей мере одну повышающую аппетитность композицию, как они описаны выше.

Такой корм для домашних животных может быть выбран из группы, состоящей из сухих, полусухих и влажных кормов.

Шестой аспект настоящего изобретения направлен на способ кормления домашних животных, включающий по меньшей мере:

а) предоставление корма для домашних животных, как он описан выше;

Предпочтительно, чтобы домашние животные были выбраны из группы, состоящей из кошек и собак.

Таким образом, изобретение относится к способу улучшения вкусовой привлекательности кормов для домашних животных, включающему липолиз исходных материалов с последующей термической реакцией - такой, как реакция Мэйлора. Под исходными материалами подразумевается животный и/или морской и/или растительный перевар, полученный после гидролиза имеющимися в тканях эндогенными ферментами или добавленными протеазами. Имеющиеся в продаже источники исходных материалов включают домашнюю птицу, свинину, говядину, баранину, рыбу и подобное им, а также их комбинации. В качестве исходных материалов можно использовать необработанные (сырые) ткани (например, внутренности или внутренности и печень из домашней птицы, свинины, говядины, баранины, рыбы и подобных им, а также их комбинаций) и проводить протеолиз перед продолжением процесса в виде липолиза и термической реакции.

Используемые в настоящем изобретении ферменты - это протеазы и липазы. Коммерческие протеазы и липазы выделяют из растений, животных и микроорганизмов - таких, как бактерии, дрожжи и грибы. На практике может оказаться, что имеющиеся в продаже протеазы не обладают полной чистотой в том смысле, что они могут проявлять остаточную липазную активность. Соответственно имеющиеся в продаже липазы могут проявлять остаточную протеолитическую активность. Конечно, опытный в данной области специалист способен выбрать подходящие ферменты, чтобы избежать возможных нежелательных побочных эффектов или минимизировать их. По этой причине в этапах (a) (i) и (г) указано, что протеолитическую и липолитическую реакции проводят соответственно «в отсутствие какой-либо добавленной липазы» (этап (а) (i)) и «в отсутствие какой-либо добавленной протеазы» (этап (г)). Это означает, что только протеаза (протеазы) в этапе (а) (i) и липаза (липазы) в этапе (г) присутствуют или добавляются. Поэтому если какая-либо остаточная липазная или протеазная активность присутствуют соответственно в этапах (а) (i) и (г), они незначительны. Единственно значительные, представляющие интерес ферментативные активности - это протеолитическая активность в этапе (а) (i) и липолитическая активность в этапе (г). Ферменты обычно используют в количествах приблизительно от 0,01% до 10%, предпочтительно от 0,01% до 5%, более предпочтительно от 0,01% до 2% по отношению к весу конечного усилителя вкусовой привлекательности.

Чтобы получить оптимальную скорость гидролиза, температуру и рН следует соотносить с используемыми ферментами. Это будет достаточно очевидно для специалистов в данной области. Можно установить нужное значение рН с помощью любого подходящего соединения, пригодного для использования в корме для домашних животных, - такого, как фосфорная кислота, каустическая сода, другие обычные и подходящие регуляторы кислотной и щелочной реакции, а также их комбинации.

Если в качестве исходного материала используются сырые ткани, после протеолиза и перед липолизом осуществляют этап тепловой инактивации ферментов (например, пастеризацию), с последующей фильтрацией, при температуре обычно приблизительно от 70°С до 95°С, в течение достаточного времени - например, приблизительно от 5 до 20 мин. Это позволяет инактивировать протеазы перед проведением липолиза.

Чтобы обеспечить проведение этапа липолиза, важно вначале эмульгировать смесь перед добавлением липаз. Эмульгирование можно осуществить добавлением по меньшей мере одного эмульгатора, приемлемого для использования в кормах для домашних животных. Подходящими эмульгаторами являются стеароил лактилат натрия (СЛН), сукциноилированные моноглицериды, камедь (гуммиарабик), альгинат натрия, лецитин и подобные им. Обычно эмульгаторы добавляют в количестве приблизительно от 0,01% до 10%, предпочтительно от 0,01% до 8% и более предпочтительно от 0,01% до 5% по отношению к весу конечного усилителя вкусовой привлекательности.

Как уже указано выше, можно испытать любой коммерчески доступный источник животного жира и/или растительного масла. Подходящими источниками растительных масел, доступными в больших количествах, являются рапсовое масло, соевое масло, кукурузное масло, оливковое масло, подсолнечное масло, масло семян льна, пальмовое масло, шафрановое масло и подобные им, а также их побочные продукты. Подходящими источниками животных жиров являются сало, лярд, птичий жир и подобные им, а также их побочные продукты. Подходящими источниками морских масел являются масло тунца, масло сардины, масло лосося, масло анчоусов, рыбий жир и подобные им, а также их побочные продукты. Здесь охвачены также жиры, получаемые из животных, растительных, морских источников, или продуцируются животными и растениями. Обычно жир присутствует в количестве приблизительно от 2% до 30%, предпочтительно от 5% до 20% по отношению к весу конечного усилителя вкусовой привлекательности.

После липолиза проводят термическую реакцию, чтобы завершить формирование привкуса продукта. Удобно добавлять углевод и соединение азота в концентрации приблизительно от 0,01% до 30%, предпочтительно от 0,1% до 20%, более предпочтительно от 0,1% до 15% для первого и приблизительно от 0,01% до 30%, предпочтительно от 0,01% до 20%, более предпочтительно от 0,01% до 15% для последнего. Подходящую температуру выбирают в интервале приблизительно от 70°С до 130°С, предпочтительно от 80°С до 120°С, и термическую обработку проводят в течение времени, достаточного для дальнейшего формирования привкуса продукта, например в течение по меньшей мере 30 мин.

Чтобы обеспечить длительный срок хранения, можно добавлять консерванты - такие, как природные или синтетические антиоксиданты (подходящие антиоксиданты включают, но не ограничиваются ими: бутилоксианизол (ВНА), бутилокситолуол (ВНТ), пропилгаллат, октилгаллат, токоферолы, экстракты розмарина и подобные им), сорбитовую кислоту или соли сорбита и другие кислоты типа фосфорной кислоты и подобных ей.

Усилитель вкусовой привлекательности согласно настоящему изобретению может быть использован прямо, сам по себе, обычно в количестве приблизительно от 0,01% до 20%, предпочтительно от 0,01% до 10%, более предпочтительно от 0,01% до 5% по весу по отношению к весу композиции корма для домашних животных. В качестве альтернативы, его можно комбинировать с другими усилителями вкусовой привлекательности, и все усилители вкусовой привлекательности можно вводить одновременно или последовательно.

В одном из вариантов осуществления настоящего изобретения сухую рецептуру с усилителем вкусовой привлекательности получают, комбинируя усилитель вкусовой привлекательности в подходящем соотношении с носителями и смешивая компоненты. Затем смесь высушивают выпариванием, и образуется сухой усилитель вкусовой привлекательности.

Усилители вкусовой привлекательности согласно настоящему изобретению применимы в кормах для домашних животных - таких, как сухие корма для домашних животных, полувлажные корма для домашних животных, имеющие содержание влаги приблизительно 50% или меньше по весу и представляющие собой питательно сбалансированную смесь, содержащую белки, волокна (fibre), углеводы и/или крахмал. Такие смеси хорошо известны специалистам в данной области и их состав зависит от многих факторов - таких, как, например, необходимый питательный баланс для конкретного вида домашнего животного. Кроме этих базовых элементов, корм может включать витамины, соли и другие добавки - такие, как приправы, консерванты, эмульгаторы и увлажняющие агенты. Питательный баланс, в том числе относительное содержание витаминов, солей, липидов, белков и углеводов, определяют согласно известным питательным стандартам в области ветеринарии - например, в соответствии с рекомендациями Национального исследовательского совета (National Research Council, NRC) или правилам Американской ассоциации представителей контроля за качеством пищи (American Asociation of Feed Control Officials, AAFCO).

Могут быть использованы все обычные источники белка, особенно растительные белки - такие, как соя или земляной орех, животные белки - такие, как казеин или альбумин, и сырые животные ткани, например, сырая мясная ткань и сырая рыбная ткань, или даже элементы, являющиеся сухими или высушенные, - такие, как рыбная мука, птичья мука, мясная мука и костная мука. Другие типы подходящих белковых материалов включают пшеничную или кукурузную клейковину и белки микроорганизмов - таких, как дрожжи. Можно также использовать ингредиенты, содержащие значительную долю крахмалов или углеводов, - например, кукурузу, milo, люцерну, пшеницу, ячмень, рис, соевую шелуху и другие зерна с низким содержанием белка.

К корму можно добавить другие ингредиенты - такие, как сыворотку и побочные продукты молока, в том числе углеводы. Кроме того, можно добавлять известные приправы, в том числе кукурузный сироп или патоку.

В качестве примера, типичная рецептура сухого корма для кошек, в которую может быть введен усилитель вкусовой привлекательности согласно настоящему изобретению, состоит из следующих компонентов (в весовых процентах): приблизительно 0-70% хлебной основы - такой, как мука (кукурузная, пшеничная, ячменная или рисовая); приблизительно 0-30% животных субпродуктов (из птицы или мяса); приблизительно 0-25% кукурузной клейковины; приблизительно 0-25% сырой животной ткани - такой, как ткани птицы или крупного рогатого скота; приблизительно 0-25% соевой муки; приблизительно 0-10% животного жира; приблизительно 0-20% основы из морских продуктов; приблизительно 0-25% сырой рыбной ткани; приблизительно 0-10% кукурузного сиропа с высоким содержанием фруктозы; приблизительно 0-10% сухой мелассы; приблизительно 0-1,5% фосфорной кислоты и приблизительно 0-1,5% лимонной кислоты.

Могут быть добавлены витамины и соли, в том числе карбонат кальция, хлорид калия, хлорид натрия, холин-хлорид, таурин, оксид цинка, сернокислое железо, витамин Е, витамин А, витамин В12, витамин D3, рибофлавин, ниацин, пантотенат кальция, биотин, мононитрат тиамина, сульфат меди, фолиевая кислота, пироксидин-гидрохлорид, йодат кальция и комплекс менадиона с бисульфитом натрия (источник активности витамина К).

Сухие корма для домашних животных вообще готовят различными способами. Один из этих способов, который широко используется, это способ варки-экструзии. В способе варки-экструзии сухие ингредиенты вначале перемешивают вместе, получая смесь. Эту смесь переносят в паровой кондиционер, где она достаточно увлажняется, чтобы ее можно было выдавливать. Затем смесь вводят в варочный экструдер, где она варится при повышенных температуре и давлении и затем выдавливается из аппарата через пресс. Этот пресс придает продукту экструзии специфическую форму. Отдельные кусочки продукта получают периодическим отрезанием от конца полосы выдавливаемого продукта. Затем отдельные кусочки или ломтики высушивают в аппарате для сушки горячим воздухом. Обычно продукт сушат до тех пор, пока он не будет содержать менее 15% влаги, предпочтительно приблизительно от 5 до 10% влаги. Затем высушенные частицы или кусочки переносят загрузочным конвейером в барабан для покрытия и опрыскивают жиром. Другие жидкости - такие, как, например, фосфорная кислота, могут альтернативно наноситься на кусочки или могут наноситься вместе с жиром. Получаемые в итоге гранулы или ломтики составляют основную композицию, к которой может быть применено покрытие усилителем вкусовой привлекательности.

В одном из вариантов осуществления настоящего изобретения усилители вкусовой привлекательности согласно настоящему изобретению могут вводиться путем покрытия. Термин «покрытие», как он использован здесь, относится к поверхностному нанесению усилителя вкусовой привлекательности или ароматизирующей композиции на поверхность основной композиции, например, разбрызгиванием, напылением и подобными им способами. Например, ломтики непокрытого, выдавленного основного (базового) корма для домашних животных могут быть помещены для смешивания в контейнер - такой, как труба или барабан для покрывания. Жир - такой, как свиной жир или птичий жир, нагревают и затем набрызгивают на корм для домашних животных так, чтобы получить покрытие ломтиков. Покрытие не требует непрерывного слоя, но предпочтительно должно быть равномерным. После жира может быть нанесен усилитель вкусовой привлекательности - либо как жидкость, либо как сухой порошок, в процессе смешивания продукта. Жидкий усилитель вкусовой привлекательности обычно набрызгивают, тогда как сухой усилитель вкусовой привлекательности обычно напыляют. В качестве альтернативы, усилители вкусовой привлекательности можно смешивать с жиром и наносить одновременно. В другом альтернативном способе покрытия усилители вкусовой привлекательности наносят до нанесения жира.

В другом варианте осуществления настоящего изобретения усилитель вкусовой привлекательности приводят в контакт с сырыми материалами композиции корма для домашних животных до варки. В этом случае усилитель вкусовой привлекательности комбинируют с белками, волокнами, углеводами и/или крахмалом базовой композиции и варят вместе с этими материалами в варочном экструдере.

Усилители вкусовой привлекательности согласно настоящему изобретению полезны также для влажных кормов для домашних животных, имеющих содержание влаги более 50% и представляющих собой питательно сбалансированную смесь. Влажный корм может содержать один или более ингредиентов, выбранных из мучнистых материалов (таких, как материалы на основе зерна и мука), животные побочные продукты, сырые животные ткани, сырые рыбные ткани, животные и растительные жиры, материалы морского происхождения, витамины, соли, консерванты, эмульгаторы, поверхностно-активные вещества, структурирующие средства, красители и подобные им. Такие ингредиенты хорошо известны опытным специалистам и могут быть подходящим образом выбраны в зависимости от вида влажного корма.

Большинство типов корма для домашних животных (комнатных животных) на основе мясной подливки готовят растиранием мяса, имитаторов мяса или мясных побочных продуктов и затем формированием протертой смеси путем экструзии при пониженном давлении через тоннель с паром, где корм варится. Затем добавляют крахмал и связующие вещества, после чего смесь нарезают на кусочки, смешивают с водой, крахмалом и связующими веществами. После этого смесь упаковывают и закрывают в консервные банки и варят в гидростате с непрерывной или вращательной стерилизацией. Влажные корма для домашних животных не на основе мясной подливки готовят путем размачивания мяса, имитаторов мяса или мясных субпродуктов и формированием размоченных материалов с помощью крахмала, воды и связующих веществ. После этого смесь упаковывают и закрывают в консервные банки и варят в гидростате с непрерывной или вращательной стерилизацией.

Жидкий или сухой усилитель вкусовой привлекательности можно вводить в основу типа подливки или желе в процессе перемешивания вместе с остальными ингредиентами (структурирующими средствами, стабилизаторами, красителями и питательными добавками). Жидкий или сухой усилитель вкусовой привлекательности можно также вводить в смеси на основе мясных субпродуктов для приготовления ломтиков или палочек. В этом случае его можно добавлять к сырому материалу до или после процесса растирания. Смесь на основе мясных субпродуктов можно варить в паровой печи или гриле в случае производства ломтиков или прямо запаивать в консервные банки в случае производства палочек.

Описанные выше усилители вкусовой привлекательности предоставляют существенные преимущества в сравнении с предыдущими решениями. Эффекты настоящего изобретения могут быть измерены в тесте, который повсеместно называют «тест двух мисок» или «тест сравнения». Конечно, опытный специалист в данной области для определения преимущества вместо описанного здесь теста двух мисок волен использовать любой другой подходящий тест. Такие альтернативные тесты хорошо известны в данной области.

Принцип теста двух мисок:

Тест основа на том постулате, что чем больше поедается корма, тем большую он имеет вкусовую привлекательность. Были проведены тесты предпочтения индивидуальных животных по методу двух мисок, основанные на сравнении двух кормов. Тесты проводили либо на группах из 36 собак, либо на группах из 40 кошек, в зависимости от цели теста.

Метод проведения теста:

Одинаковые количества корма А и корма Б были взвешены и помещены в одинаковые миски. Имеющееся в каждом рационе количество обеспечивает дневную потребность в пище.

Распределение мисок:

Тест для собак: миски помещали в индивидуальные подносы для корма, доступные для собак.

Тест для кошек: миски ставили в одно и то же время перед каждой кошкой в индивидуальных запертых боксах и их положение меняли при каждой кормежке, чтобы исключить влияние положения мисок.

Длительность испытания:

Тест для собак: максимально 15 мин (если одна из двух мисок была полностью опорожнена менее чем за 15 мин, обе миски убирали и тест прекращали).

Тест для кошек: минимально 15 мин (если содержимое одной из мисок было полностью съедено менее чем за 30 мин, обе миски убирали и тест прекращали).

Исследуемые параметры:

Измеряемые параметры: Первый съеденный корм и количество каждого корма, съеденное к концу теста.

Рассчитываемые параметры: Индивидуальное соотношение потребления в % (СП) (consumption ratio, CR).

СП А = потребление корма А (в г) × 100/потребление А+Б (в г)

СП Б = потребление корма Б (в г) × 100/потребление А+Б (в г).

Среднее соотношение потребления (ССП) - это среднее всех индивидуальных соотношений (все животные одинаково значимы, независимо от их размера и их соответствующего потребления пищи). Если потребление у животных выше или ниже определенных величин, их не принимают в рассмотрение при статистической обработке.

Статистический анализ:

Статистический анализ был применен для того, чтобы определить, есть ли достоверное различие между двумя соотношениями ССП. Использован t-тест Стьюдента с тремя пороговыми значениями ошибки, а именно 5%, 1% и 0,1%.

Хи-тест был использован для того, чтобы определить, имеется ли достоверное различие между числом собак или кошек с предпочтением корма А и числом собак или кошек с предпочтением корма Б.

Уровни значимости обозначены, как указано ниже:

НД различие недостоверно (р>0,05)

* достоверно (р<0,05)

** высокая степень достоверности (р<0,01

*** очень высокая степень достоверности (р<0<001).

В следующих примерах испытаны различные типы жиров или жировых смесей, как они определены выше. Эти жиры обозначены здесь далее как жир 1, жир 2, жир 3. Ниже показано, что независимо от того, использованы ли жир или жировая смесь, вкусовая привлекательность продукта согласно настоящему изобретению очень высока.

Пример 1: продукт XLHM с исходным сырым материалом

Рецептура:

Таблица 1
Компоненты %
Исходный сырой материал 78,43
Жир 7,18
Каустическая сода 3,10
Редуцирующие сахара 1,79
Соединения азота 2,24
Фермент протеаза 0,50
Фермент липаза 0,05
Эмульгаторы 0,60
Фосфорная кислота 5,73
Сорбат калия 0,36
Консерванты и антиоксиданты 0,02

Сырые материалы, экзогенные и/или эндогенные протеазы, консерванты и антиоксиданты смешивают вместе и прогревают при температуре приблизительно от 60°С до 70°С в течение по меньшей мере 30 мин (этап a) (i)).

Смесь прогревают и выдерживают для пастеризации при температуре приблизительно 85°С в течение по меньшей мере 10 мин, затем охлаждают при температуре приблизительно от 25°С до 45°С, предпочтительно вместе с сопутствующей фильтрацией, чтобы получить продукт реакции первой стадии (этап a) (ii)).

По усмотрению, можно добавить здесь этап хранения при подходящих условиях в течение заданного периода, с предшествующим процессом подкисления.

Затем рН доводят приблизительно до величины от 7 до 10 с помощью каустической соды или регулятора щелочности и для липолиза добавляют эмульгаторы, жир и липазные ферменты, липолиз проводят в течение по меньшей мере 120 мин, предпочтительно приблизительно от 120 до 420 мин, чтобы получить продукт реакции второй стадии (этапы с б) по г) проводят одновременно).

Вводят редуцирующие сахара и соединения азота и прогревают полученную смесь при температуре приблизительно от 90°С до 110°С в течение по меньшей мере 30 мин, получая в итоге усилитель вкусовой привлекательности (этап д).

В конце концов продукт охлаждают и для длительного хранения добавляют фосфорную кислоту, сорбат калия, консерванты и антиоксиданты, при этом конечный рН составляет 2,9, в итоге получают готовый к использованию продукт усилителя вкусовой привлекательности (обозначен XLHM).

XLHM версия А: основа - сырой материал из домашней птицы;

XLHM версия В: основа - сырой материал из домашней птицы, использован жир 1;

XLHM версия С: основа - сырой материал из домашней птицы, использован жир 2;

XLHM версия D: основа - сырой материал из домашней птицы, использован жир 3.

Результаты сравнения вкусовой привлекательности SP1 и SP2 для собак:

Таблица 2
Дата теста и шифр Корм А Корм Б Т Первый выбор Соотношение потребления Уровень значимости Число животных
25/10/2004 2,5% 2,5% Т0 Б* 21 79 *** 29
10012434 SP1 SP2 1,0 3,8

Потребление кормов SP1 и SP2 достоверно различается, что демонстрирует лучшее исполнение усилителя вкусовой привлекательности SP2 фирмы Super Premium. Результаты испытаний представлены на графике на фиг.1.

Результаты испытаний вкусовой привлекательности для собак XLHM в сравнении с SP1 и SP2

Все четыре версии XLHM проявляют повышенную вкусовую привлекательность по сравнению с продуктом SP1. При всех использованных вариантах жира вкусовая привлекательность XLHM равна или выше вкусовой привлекательности SP2.

Пример 2: продукт XLHM с исходным расщеплением

Рецептура:

Таблица 4
Компоненты %
Исходный продукт расщепления 59,49
Вода 11,18
Жир 6,71
Каустическая сода 12,13
Редуцирующие сахара 1,39
Соединения азота 1,74
Фермент липаза 0,05
Эмульгаторы 0,64
Соли 0,24
Фосфорная кислота 6,18
Сорбат калия 0,23
Консерванты и антиоксиданты 0,02

Используемый в этом примере исходный продукт - это перевар (продукт расщепления), полученный после этапа a) (i) и (ii), как это проиллюстрировано в примере 1, то есть это продукт первой реакции.

Метод начинается с этапов б), в) и г), где рН устанавливают в диапазоне приблизительно от 7 до 10 с помощью каустической соды или регуляторов щелочности, для проведения липолиза добавляют эмульгаторы, жир и липазные ферменты, липолиз проводят в течение по меньшей мере 120 мин, предпочтительно в течение приблизительно от 120 до 420 мин, чтобы получить продукт реакции второй стадии.

Затем вводят редуцирующие сахара и соединения азота и прогревают полученную смесь при температуре приблизительно от 90°С до 110°С в течение по меньшей мере 30 мин, получая в итоге усилитель вкусовой привлекательности (этап д).

В конце концов продукт охлаждают и для длительного хранения добавляют фосфорную кислоту, сорбат калия, консерванты и антиоксиданты, при этом конечный рН составляет 2,9, в итоге получают готовый к использованию продукт усилителя вкусовой привлекательности (обозначен XLHM версия).

Оценка вкусовой привлекательности для собак:

SP1 и SP2 - жидкости фирмы Super Premium из существующего набора с различным уровнем вкусовой привлекательности, причем вкусовая привлекательность у SP2 больше, чем у SP1.

Продукты XLHM - это усилители вкусовой привлекательности согласно настоящему изобретению:

XLHM версия Е: вначале жидкий перевар, использован жир 1;

XLHM версия F: вначале жидкий перевар, использован жир 2;

XLHM версия G: вначале жидкий перевар, использован жир 3.

Таблица 5
Дата теста и шифр Корм А Корм Б Т Первый выбор Соотношение потребления Уровень значимости Число животных
14/10/2006 2% 2% Т0 Б* 27 73 ** 29
10027288 SP1 XLHM E 1,0 2,7
17/12/2006 2% 2% T0 Б*** 23 77 *** 34
10028701 SP1 XLHM F 1,0 3,3
16/10/2006 2% 2% T0 НД 52 48 НД 31
10027339 SP2 XLHM E 1,1 1,0
19/12/2006 2% 2% T0 Б НД 38 62 НД 31
10028741 SP2 XLHM F 1,0 1,6
12/04/2007 2% 2% T0 Б* 33 67 ** 32
10031077 SP2 XLHM G 1,0 2,0

Все результаты испытаний представлены на графике на фиг.2.

При использовании исходного перевара в начале процесса получен тот же итог, что и ранее. То есть: более высокая вкусовая привлекательность, чем у SP1, и по меньшей мере равная таковой у SP2, а часто более высокая, чем у SP2.

Сравнительный пример 3: продукт XLHM (D") с исходным сырым материалом и без относящегося к этому этапа протеолиза

Рецептура:

Таблица 6
Компоненты %
Исходный сырой материал с эндогенными протеазами 67,13
Вода 12,74
Жир 3 8,42
Каустическая сода 2,15
Редуцирующие сахара 1,59
Соединения азота 1,98
Фермент липаза 0,08
Эмульгаторы 0,60
Соли 0,47
Фосфорная кислота 4,25
Сорбат калия 0,55
Консерванты и антиоксиданты 0,04

Здесь метод начинается с этапа совместного действия протеаз и липаз.

Вначале смешивают вместе содержащие протеазы сырые материалы, воду, консерванты и антиоксиданты, рН устанавливают в интервале приблизительно от 7 до 10 с помощью каустической соды, для проведения этапа гидролиза добавляют эмульгаторы, соли, жир 3 и липазные ферменты, гидролиз проводят при температуре приблизительно от 25°С до 45°С, в течение по меньшей мере 120 мин, предпочтительно в течение приблизительно от 120 до 420 мин, чтобы получить продукт 1.

Затем вводят редуцирующие сахара и соединения азота и прогревают полученную смесь при температуре приблизительно от 90°С до 110°С в течение по меньшей мере 30 мин, чтобы получить продукт 2.

В конце концов продукт 2 охлаждают и для длительного хранения добавляют фосфорную кислоту, сорбат калия, консерванты и антиоксиданты, при этом конечный рН составляет 2,9, чтобы получить готовый к использованию продукт (продукт XLHM D").

Оценка вкусовой привлекательности для собак:

Таблица 7
Дата теста и шифр Корм А Корм Б Т Первый выбор Соотношение потребления Уровень значимости Число животных
28/06/2006 2% 2% T0 Б** 18 82 *** 32
10024708 SP1 XLHM D" 1,0 4,5
29/06/2006 2% 2% T0 Б НД 43 57 НД 34
10024730 SP2 XLHM D" 1,0 1,3

В сравнении с результатами, полученными для продукта XLHM версия D (см. пример 1), XLHM версия D" хуже в сравнении с SP2, но сохраняет высокую вкусовую привлекательность по сравнению с SP1. Другими словами, результаты, полученные при комбинации протеолиза и липолиза, не так хороши, как результаты, полученные при разделении протеолиза и липолиза.

Сравнительный пример 4: продукт XLHM (В") с исходным сырым материалом и с переменой порядка ферментативных этапов

Рецептура:

Таблица 8
Компоненты %
Исходный сырой материал 59,43
Вода 11,06
Жир 1 6,61
Каустическая сода 12,86
Редуцирующие сахара 1,38
Соединения азота 0,57
Фермент липаза 0,05
Протеаза 0,23
Эмульгаторы 0,47
Соли 0,4
Фосфорная кислота 6,64
Сорбат калия 0,28
Консерванты и антиоксиданты 0,02

В этом примере метод начинается этапом липолиза, за которым следует этап протеолиза.

Вначале смешивают вместе сырые материалы, воду, консерванты и антиоксиданты, рН устанавливают в интервале приблизительно от 7 до 10 с помощью каустической соды, для проведения этапа липолиза добавляют эмульгаторы, соли, жир 1 и липазные ферменты, липолиз проводят при температуре приблизительно от 25°С до 45°С, в течение по меньшей мере 120 мин, предпочтительно в течение приблизительно от 120 до 420 мин, чтобы получить продукт 1.

Затем вводят протеазные ферменты, редуцирующие сахара и соединения азота и прогревают при температуре приблизительно от 60°С до 70°С в течение по меньшей мере 30 мин, чтобы получить продукт 2.

Полученную смесь прогревают при температуре приблизительно от 90°С до 110°С в течение по меньшей мере 30 мин, чтобы получить продукт 3.

В конце концов продукт 3 охлаждают и для длительного хранения добавляют фосфорную кислоту, сорбат калия, консерванты и антиоксиданты, при этом конечный рН составляет 2,9, чтобы получить готовый к использованию продукт (продукт XLHM В").

Оценка вкусовой привлекательности для собак:

В сравнении с результатами, полученными для продукта XLHM версия В (см. пример 1), XLHM версия В" хуже, чем SP1.

Заключение: лучшие результаты получаются, если протеолиз проводится до липолиза, чем когда липолиз предшествует протеолизу.

Пример 5: Добавление продукта XLHM версия G в хлебцы для кошек

Рецептура продукта В

Таблица 10
Компоненты кг
2,376
5,232
Замороженные куриные тушки 3,912
Структурирующие агенты 0,235
Смесь витаминов и солей 0,072
Пшеничная мука 1,200
XLHM версия G 0,720
Вода 10,253

Рецептура продукта С

Таблица 11
Компоненты кг
Замороженные свиные легкие и печень 2,811
Замороженные куриные легкие и печень 5,271
Замороженные куриные тушки 3,932
Структурирующие агенты 0,235
Смесь витаминов и солей 0,072
Пшеничная мука 1,200
порошок C"sens W9P 0,240
Вода 10,238

Определение: C"sens W9P - это коммерческий усилитель вкусовой привлекательности SPF фирмы Super Premium, предназначенный для введения во влажный корм для домашних животных.

Сырые материалы (свиные легкие, свиная печень, куриные легкие и печень, куриные тушки) размораживали в течение ночи при комнатной температуре. Затем их растирали в вертикальном измельчителе (Stephen, Germany) в течение 5 мин при частоте 1500 перемещений в мин. В стакан добавляли воду. Порошки (структурирующие агенты, смесь витаминов и солей и пшеничную муку) и XLHM версия G или C"sens W9P растворяли в воде с помощью гомогенизатора (Dynamic, France). Раствор добавляли к растертым мясным продуктам и перемешивали еще в течение 5 мин под вакуумом (-1 бар) в измельчителе. Кашу переносили в вакуумный дозатор (Handtmann, Germany) и расфасовывали в железные банки на 400 г. Банки закрывали и прогревали в Microflow retort (Barriquand, France), используя следующий режим: нагревание до 127°С в течение 13 мин, температура 127°С поддерживается в течение 55 мин, охлаждение до 20°С в течение 15 мин.

Оценка вкусовой привлекательности для кошек

Таким образом, здесь показан и описан новый и полезный способ улучшения вкусовой привлекательности композиций корма для домашних животных. Хотя настоящее изобретение сопровождалось примерами для целей иллюстрации и описание дано со ссылкой на конкретные варианты осуществления, опытным специалистам в данной области должно быть очевидно, что возможны различные модификации, видоизменения и эквиваленты иллюстрирующих примеров. Считается, что любые такие изменения, которые прямо следуют из изложенного здесь и которые не отходят от духа и охвата настоящего изобретения, покрываются настоящим изобретением.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения усилителя вкусовой привлекательности для использования в кормах для домашних животных, включающий по меньшей мере:

а) предоставление продукта реакции первой стадии, получаемого путем:

(i) проведения реакции по меньшей мере с одной экзогенной и/или эндогенной протеазой в отсутствие какой-либо экзогенной или добавленной липазы, причем субстрат содержит белковые и жировые материалы в количествах, при условиях рН и температуры и за время, эффективных для осуществления протеолитической реакции, (ii) тепловой инактивации указанной протеазы и фильтрования полученного продукта расщепления;

б) по усмотрению добавление жира;

в) эмульгирование указанного продукта реакции первой стадии;

г) проведение реакции указанной эмульсии по меньшей мере с одной липазой в отсутствие какой-либо добавленной протеазы в количествах, при условиях рН и температуры и за время, эффективных для осуществления липолитической реакции, чтобы получить продукт реакции второй стадии;

д) добавление к указанному продукту реакции второй стадии по меньшей мере одного редуцирующего сахара и по меньшей мере одного соединения азота и нагревание полученной смеси до температуры и в течение времени, эффективных для дальнейшего формирования вкусовой привлекательности смеси, что приводит к получению усилителя вкусовой привлекательности.

2. Способ по п.1, дополнительно включающий этап a) (iii) охлаждения продукта, полученного в этапе a) (ii), до температуры, эффективной для проведения последующей липолитической реакции в этапе г).

3. Способ по п.1 или 2, дополнительно включающий этап охлаждения смеси, полученной в этапе д).

4. Способ по п.1 или 2, где продукт реакции первой стадии готовится и хранится при подходящих условиях до последующего использования.

5. Усилитель вкусовой привлекательности для использования в кормах для домашних животных, который может быть получен способом по любому из пп.1-4.

6. Усилитель вкусовой привлекательности по п.5, где указанный усилитель вкусовой привлекательности представляет собой жидкость или порошок.

7. Повышающая аппетитность композиция для использования в кормах для домашних животных, содержащая по меньшей мере один усилитель вкусовой привлекательности по п.5 или 6.

8. Способ приготовления корма для домашних животных, имеющего повышенную вкусовую привлекательность, включающий по меньшей мере:

введение в корм для домашних животных по меньшей мере одного усилителя вкусовой привлекательности по п.5 или 6 или по меньшей мере одной повышающей аппетитность композиции по п.7 в количестве, эффективном для повышения вкусовой привлекательности указанного корма для домашних животных.

9. Способ по п.8, где указанное введение осуществляется путем покрытия или путем добавления к основной массе корма для домашних животных.

10. Корм для домашних животных, имеющий повышенную вкусовую привлекательность, который может быть получен способом по п.8 или 9.

11. Обладающий вкусовой привлекательностью корм для домашних животных, содержащий по меньшей мере один усилитель вкусовой привлекательности по п.5 или 6 или по меньшей мере одну повышающую аппетитность композицию по п.7.

12. Корм для домашних животных по п.10 или 11, где указанный корм для домашних животных выбран из группы, состоящей из сухих, полусухих и влажных кормов для домашних животных.

13. Способ кормления домашних животных, включающий по меньшей мере:

а) предоставление корма для домашних животных по любому из пп.10-12;

б) скармливание домашним животным указанного корма для домашних животных.

14. Способ по п.13, где указанные домашние животные выбраны из группы, состоящей из кошек и собак.

Таблица 12
Дата теста и шифр Корм А Корм Б Т Первый выбор Соотношение потребления Уровень значимости Число живот-ных
21/07/2007 2% 2% Т0 А* 66 34 *** 36
10033195 продукт В

Диссертация

Исаева, Ольга Михайловна

Ученая cтепень:

Кандидат биологических наук

Место защиты диссертации:

Код cпециальности ВАК:

Специальность:

Ихтиология

Количество cтраниц:

Глава 1. ОБЗОР ЛИТЕРАТУРЫ

Глава 2. МАТЕРИАЛ И МЕТОДИКА

2.1. Объекты исследования

2.2. Условия содержания и подготовка рыб к экспериментам

2.3. Определение вкусовых предпочтений

2.4. Исследование динамики поведенческого вкусового ответа

2.5. Приготовление экспериментальных гранул

2.6. Общая характеристика материала

Глава 3. ВКУСОВЫЕ ПОВЕДЕНЧЕСКИЕ ОТВЕТЫ КАРПОВЫХ РЫБ НА КЛАССИЧЕСКИЕ ВКУСОВЫЕ ВЕЩЕСТВА, СВОБОДНЫЕ АМИНОКИСЛОТЫ И ОРГАНИЧЕСКИЕ КИСЛОТЫ

3.1.1. Классические вкусовые вещества

3.1.2. Свободные аминокислоты

3.1.3. Органические кислоты

3.2. Горчак

3.2.1. Классические вкусовые вещества

3.2.2. Свободные аминокислоты

3.2.3. Органические кислоты

3.3. Верховка

3.3.1. Классические вкусовые вещества

3.3.2. Свободные аминокислоты

3.4. Золотой карась

3.4.1. Классические вкусовые вещества

3.4.2. Свободные аминокислоты

3.5. Лещ

3.5.1. Классические вкусовые вещества

3.5.2. Свободные аминокислоты

Глава 4. ДИНАМИКА ПРОЯВЛЕНИЯ ВКУСОВОГО ПОВЕДЕНЧЕСКОГО

ОТВЕТА КАРПОВЫМИ РЫБАМИ

4.2.1. Гранулы с цистеином

4.2.2. Гранулы с глутамином

4.3. Горчак

Глава 5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 86 ЗАКЛЮЧЕНИЕ 123 ВЫВОДЫ 127 СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ 127 ПРИЛОЖЕНИЯ

Введение диссертации (часть автореферата) На тему "Вкусовые предпочтения и вкусовое поведение карповых рыб"

Актуальность темы. Пищевое поведение лежит в основе важнейшей жизненной функции рыб - питания, имеющего определяющее значение как для отдельной особи , так и для популяции и вида в целом. Ведущую роль в сенсорном обеспечении заключительной фазы пищевого поведения рыб играет вкусовая рецепция, которая обеспечивает оценку вкусовых свойств добычи и ее соответствие пищевым потребностям рыб, а также потребление ими адекватных кормовых объектов (Atema, 1980; Павлов, Касумян , 1990, 1998; Касумян, 1997). До последнего времени многочисленные исследования вкусовой системы рыб были посвящены, главным образом, выяснению морфологии и топографии вкусовых почек, изучению их ультраструктуры и иннервации, исследованию морфологической организации центрального отдела вкусовой системы (Zuwala, Jakubowski, 1993; Reutter, 1992; Jakubowski, Zuwala, 2000; Василевская, 1974). Многочисленные исследования по изучению функциональных свойств вкусовой системы рыб проводились в основном с помощью электрофизиологических методов (Marui, Caprio, 1992; Jones, 1990; Sutterlin, 1975). Однако в последнее время очень быстро и весьма продуктивно развивается и другое направление в изучении вкусовой рецепции: это - методы поведенческих тест-реакций, с помощью которых удалось оценить вкусовые предпочтения уже довольно многочисленного ряда рыб. Объем экспериментальных данных, накопленных за последние годы, дает ясное представление об общих закономерностях и специфических особенностях отношения рыб к вкусовым раздражителям, сходстве и отличиях пищевых спектров эффективных вкусовых веществ у рыб разного возраста и систематического положения, а также показывает сходства и отличия наружной и внутриротовой вкусовой рецепции (Касумян, 1997; Kasumyan, D/aving, 2003).

Но пока крайне слабо исследованным остается вопрос о наличии сходства и/или различий во вкусовых предпочтениях близкородственных видов рыб. Нет данных по физиологическому аспекту проявления рыбами вкусового поведенческого ответа. Отсутствуют сведения о влиянии образа жизни близкородственных видов карповых рыб на проявление ими различных элементов поведенческого ответа на различные вкусовые стимулы.

Исследование этих и других немаловажных вопросов вкусовой рецепции рыб имеет, кроме практического, и теоретическое значение, т.к. позволяет выяснить роль этой сенсорной системы в обеспечении избирательности питания рыб адекватными кормовыми объектами, в поддержании гомеостаза. Знание закономерностей вкусовой чувствительности рыб, их особенностей реагирования на различные типы вкусовых веществ сопряжено с возможностью решения таких актуальных прикладных вопросов современной аквакультуры , как поиск высокоэффективных химических стимуляторов питания, совершенствование существующих и создание новых искусственных кормов, разработка биотехнологии кормления рыб, а также искусственных химических приманок и насадок для рыб.

Цель работы. Исследовать вкусовые предпочтения, чувствительность к вкусовым стимулам различного типа и особенности вкусового поведения у близкородственных видов рыб (на примере рыб семейства карповых, Сурпшс1ае).

В задачи исследования входило:

Сравнить вкусовые предпочтения классических вкусовых веществ и свободных аминокислот у карповых рыб;

Выяснить вкусовые предпочтения органических кислот у карповых рыб;

Исследовать связь между вкусовой привлекательностью веществ и их некоторыми структурными и физико-химическими свойствами;

Определить уровень вкусовой чувствительности карповых рыб к вкусовым веществам, обладающим стимулирующими и детеррентными свойствами;

Исследовать вкусовое поведение карповых рыб, его структуру, динамику и особенности основных элементов вкусового поведенческого ответа.

Научная новизна. Научная новизна настоящей диссертационной работы заключается в расширении представлений о функциональных особенностях вкусовой системы у близкородственных видов рыб и выяснении особенностей проявляемого ими вкусового поведенческого ответа. В работе впервые определены вкусовые предпочтения 5-ти видов карповых рыб к классическим вкусовым веществам и свободным аминокислотам, 2-х видов рыб к органическим кислотам.

Впервые определен уровень вкусовой чувствительности 3-х видов карповых рыб к веществам, обладающим позитивными вкусовыми свойствами, а также к веществам, вызывающим негативные вкусовые ответы (детерренты ). Показано отсутствие общих для карповых рыб связей между уровнем вкусовой привлекательности веществ и их физико-химическими свойствами (молекулярная масса, рН раствора, число функциональных групп). Впервые с помощью оригинальной компьютерной программы «ВН-Р1зЬ» исследована структура поведенческого вкусового ответа рыб, выяснена динамика его проявления, определена продолжительность отдельных поведенческих актов вкусового ответа раздельно для опытов, заканчивающихся заглатыванием или отверганием искусственного пищевого объекта (гранулы корма).

Практическая значимость работы. Результаты настоящего исследования могут найти применение в практике аквакультуры и рыболовства при поиске высокоэффективных пищевых химических стимуляторов, при совершенствовании и разработке искусственных приманок и насадок, при составлении и совершенствовании рецептур искусственных кормов для повышения их вкусовой привлекательности для рыб. Полученные результаты по динамике вкусового поведенческого ответа позволяют составить более четкое представление об особенностях проявления рыбами заключительной фазы сложно организованного пищевого поведения и способах его направленного регулирования с помощью химических стимулов. Результаты исследования используются в рамках курса лекций «Физиология рыб », читаемого студентам кафедры ихтиологии Биологического факультета МГУ. Защищаемые положения.

1. Вкусовые предпочтения близкородственных видов рыб, относящихся к одному семейству (карповые), характеризуются высокой видовой специфичностью.

2. Вкусовая привлекательность некоторых веществ у близкородственных видов рыб может совпадать.

3. Пороговые концентрации веществ, обладающих для рыб привлекательными и отталкивающими вкусовыми свойствами, близки.

4. Вкусовое поведение рыб имеет определенную структуру и динамику, характеризуется специфическими и общими чертами у рыб с разным образом жизни и особенностями питания, зависит от вкусовых свойств пищевого объекта.

Работа выполнена при финансовой поддержке РФФИ (гранты 04-0448157 и 07-04-00793) и в рамках тематического плана работ ФГНУ «НИИЭРВ ».

Апробация работы. Материалы диссертации были представлены на Всероссийском симпозиуме «Возрастная и экологическая физиология рыб » (Борок, ИБВВ , 1998), Международной межвузовской конференции "Ломоносов-98" (Москва, МГУ , 1998), 2-ой межвузовской конференции, посвященной Всемирному дню сохранения водно-болотных угодий (Рыбное, 1999), 26-й Международной этологической конференции (Bangalore, India, 1999), Международной конференции «Трофические связи в водных сообществах и экосистемах » (Борок, 2003), Второй Международной научной конференции «Биотехнология - охране окружающей среды» (Москва, 2004), Международной конференции «Современные проблемы физиологии и биохимии водных организмов » (Петрозаводск, 2004), Международной конференции «Поведение рыб » (Борок, 2005), 9-м съезде ГБО РАН (Тольятти, 2006), Международной конференции «Проблемы популяционной экологии животных» (Томск, 2006), IV Международной конференции «Химическая коммуникация животных. Фундаментальные проблемы» (Москва, 2006 г), на коллоквиумах лаборатории хеморецепции и поведения рыб кафедры ихтиологии Биологического факультета МГУ.

Личный вклад автора. Автор принимала непосредственное участие в постановке, получении и обработке экспериментальных материалов, интерпретации полученных результатов. Ей принадлежит решение всех поставленных задач, обобщение результатов, обоснование научных выводов.

Публикации. Основные положения диссертации изложены в 15 печатных работах.

Структура диссертации. Диссертация изложена на 171 страницах машинописного текста, включает 27 таблиц, 18 рисунков и 11 приложений. Состоит из введения, 5 глав, заключения, выводов, списка цитируемой литературы и приложений. Список литературы включает 260 источников, из них 150 - на иностранных языках.

Заключение диссертации по теме "Ихтиология", Исаева, Ольга Михайловна

1. Исследованные виды карповых рыб обладают хорошо выраженной вкусовой чувствительностью к химическим вещества различного типа -свободным аминокислотам, органическим кислотам, классическим вкусовым веществам.

2. Вкусовые спектры свободных аминокислот, органических кислот и классических вкусовых веществ у карповых рыб различаются по широте, составу и относительной эффективности веществ. Значимая корреляция между вкусовыми спектрами карповых рыб в большинстве случаев не обнаруживается, что подтверждает высокий уровень видовой специфичности вкусовых предпочтений у рыб, в том числе и у близкородственных видов.

3. Вкусовые предпочтения карповых рыб к отдельным веществам могут совпадать или быть сходными. Уровень вкусовой чувствительности к веществам, обладающим для рыб привлекательными или отталкивающими вкусовыми свойствами, существенно не различается.

4. Структурные изомеры обладают разной вкусовой привлекательностью для рыб и вызывают вкусовые ответы, различающиеся количественными характеристиками. Не выявлено общих для карповых рыб связей между уровнем вкусовой привлекательности веществ и их структурными особенностями и физико-химическими свойствами (молекулярная масса, рН раствора, число функциональных групп и т.п.).

5. Характерной чертой вкусового поведения рыб являются многократные схватывания и отвергания пищевого объекта, предшествующие заглатыванию или окончательному отказу от его потребления. Число повторных схватываний , продолжительность удержаний объекта, а также общее время, затрачиваемое рыбами на тестирование пищи зависят от вкусовых качеств пищевого объекта и от образа жизни и особенностей питания рыб.

6. Вкусовое поведение протекает сходным образом у рыб разных видов. В случаях заглатывания рыбами добычи или окончательного отказа от ее потребления вкусовое поведение различается по продолжительности последовательных удержаний пищевого объекта и интервалов между схватываниями и по динамике этих параметров.

ЗАКЛЮЧЕНИЕ

Результаты, полученные в ходе выполнения настоящей работы, подтверждают высокий уровень видовой специфичности вкусовых спектров у рыб, в том числе и у близкородственных видов. Видовое своеобразие вкусовых спектров проявляется по отношению ко всем исследованным группам соединений - классическим вкусовым веществам, свободным аминокислотам, органическим кислотам. Вместе с тем, отношение к вкусу некоторых веществ у близкородственных рыб может быть близким или даже совпадать, что свидетельствует об определенном сходстве у них вкусовых предпочтений. Несомненно, что для формулирования более строгих выводов о связи между вкусовыми предпочтениями и систематической принадлежностью рыб требуются дополнительные исследования. Продолжение работ в этом направлении и увеличение числа исследованных видов рыб помогут найти ответы и на некоторые другие еще недостаточно раскрытые вопросы вкусовой рецепции рыб, в частности, о взаимосвязи между вкусовой избирательностью рыб и их образом жизни и характером питания.

В работах, посвященных вкусовой рецепции рыб, большое внимание уделяется поиску структурных или физико-химических характеристик химических веществ, которые могли бы объяснять или коррелировать с их вкусовыми свойствами для рыб. Результаты работы показывают, что рыбы проявляют разный уровень вкусовых предпочтений к веществам, отличающимся структурными особенностями молекулы или различающимся своими свойствами. Однако общих для рыб связей между структурными и физико-химическими характеристиками вещества и его вкусовой привлекательностью не выявлено, что объясняется видовой спецификой вкусовых спектров.

Впервые получены данные о структуре вкусового поведения и его динамике у рыб. Заглатывание или окончательное отвергание гранулы происходит у рыб после нескольких отверганий и повторных схватываний гранулы. Чем больше число повторных актов схватывания гранулы, тем длительнее время, затрачиваемое рыбами на вкусовое поведение, на оценку вкусовых качеств добычи. Это в полной мере относится к опытам, закончившихся заглатыванием гранулы и к опытам, в которых гранула в итоге была рыбой отвергнута. Продолжительность вкусового ответа в последнем случае значительно короче, прежде всего из-за менее длительных периодов удержания гранулы в ротовой полости. Продолжительность удержания гранулы быстро и закономерно снижается с каждым последующим схватыванием, тогда как интервалы между схватываниями изменяются менее существенно. Динамика вкусового ответа различается у горчака, леща и линя. Возможно, это связано с различиями характера и стратегии питания рыб, их образа жизни. Рыбы, обитающие в стоячей воде и питающиеся в основном представителями инфауны (лещ, линь), склонны к очень длительному анализу вкусового объекта из-за повышенной вероятности попадания в ротовую полость несъедобных частиц грунта и необходимости сепарировать пищевые объекты. Эти рыбы совершают и большое количество повторных схватываний гранулы.

Закономерности вкусовой рецепции рыб, специфические особенности реагирования рыб на различные типы вкусовых веществ, динамика проявления вкусового поведенческого ответа представляют важный практический интерес и могут найти применение для решения различных проблем рыболовства и аквакультуры . Выполненные исследования показывают перспективность поиска и создания высокоэффективных стимуляторов и детеррентов для рыб, служат биологической основой для разработки способов управления пищевым поведением рыб с помощью вкусовых раздражителей. Полученные нами результаты могут быть использованы для повышения вкусовой привлекательности кормов, рыболовных приманок и наживок, для проведения работ по коррекции их рецептуры за счет внесения специальных веществ, обладающих высоким стимулирующим действием, либо путем исключения из состава компонентов, содержащих детеррентные соединения. Это позволит не только сократить прямые потери искусственных кормов, но и обеспечит более эффективное конвертирование корма на рост рыб. Известно, что потребление хемосенсорно привлекательных кормов сопровождается у рыб более интенсивной секрецией пищеварительных ферментов (Такес1а, Такп, 1992).

Список литературы диссертационного исследования кандидат биологических наук Исаева, Ольга Михайловна, 2007 год

1. Андрияшев А.П. 1944. Роль органов чувств в отыскании пищи у морского налима // Журн. общей биол. Т.5. № 2. С. 123-127.

2. Андрияшев А.П. 1955. Роль органов чувств в отыскании пищи у рыб // Тр. совещания по методике изучения кормовой базы и питания рыб. М.: АН СССР . С. 135-142.

3. Аристовская Г.В. 1935. К вопросу о питании некоторых волжско-камских рыб // Тр. Татарского отделения ВНИОРХ . Т. 2.

4. Арнольд И.И. 1902. Наблюдения над питанием рыб в некоторых районах Валдайской возвышенности // «Вестник рыбопромышленности ». № 1.

5. Белый Н.Д. 1956. Биология и разведение леща . Киев: Из-во АН Украинской ССР . С. 45-54.

6. Бобров Ю.П. 1968. Питание и рост белого амура в условиях прудовых хозяйств центральной зоны РСФСР // Новые исследования по экологии и разведению растительноядных рыб. М.: Наука. С. 106-115.

7. Бодрова Н.В. 1962. Рецепторы химического чувства леща // Вопр.ихтиологии. Т.2, вып.4 (25). С. 48-54.

8. Бодрова Н.В. 1965. Структурная организация обонятельного рецептора рыб.// В сб. Бионика. М.: Наука. С. 48-69.

9. Боруцкий Е.В. 1950. Материалы о питании амурского толстолобика (Hypophthalmichthys molitrix Val.) // Труды Амурской ихтиологической экспедиции 1945-1949 гг. Т. 1.

10. Василевская Н.Е. 1974. О химической необонятельной рецепции у рыб // В сб.: Основные особенности поведения и ориентации рыб. М.: Наука. С. 36-56.

11. Веригин Б.В. 1961. Итоги работы по акклиматизации дальневосточных растительноядных рыб и мероприятия по их дальнейшему освоению и изучению в новых районах // Вопросы ихтиологии . Т. 1, вып. 4 (21). С. 640-649.

12. Гаевская Н.С. 1956. Основные задачи изучения кормовой базы ипитания рыб в аспекте главнейших основрыбного хозяйства // Труды совещания по методике изучения кормовой базы и питания рыб. М.: Изд-во АН СССР. С. 6-20.

13. Гдовский П.А., Гремячих В.А., Непомнящих В.А. 1994. Влияние аносмии на содержание глюкозы в крови и исследовательское поведение карпа Cyprinus carpio в присутствии зрительного ориентира // Журн. эволюц. биохимии и физиол . Т.30. № 6. С.746-752.

14. Гирса И.И. 1981. Освещенность и поведение рыб. М.: Наука. 163 с.

15. Грандилевская-Дексбах M.J1. 1961. Основные черты донной фауны и питания рыб Камского водохранилища (1955-1959) // Тр. Урал. Отд. ГосНИОРХ . № 5.

16. Девицына Г.В. 1997. К вопросу о хемосенсорно-тактильном обеспечении пищевого поведения тресковых рыб Белого моря // Вопр. ихтиологии. Т. 37. № 1. С. 94-100.

17. Девицына Г.В. 1998. Развитие органов химической рецепции в онтогенезе обыкновенной щуки Esox lucius II Вопр. ихтиологии. Т. 38. № 4. С. 537-547.

18. Девицына Г.В. 2004. Хемосенсорные системы рыб: Структурно-функциональная организация и взаимодействие // Автореф. дис. . д-ра биол . наук. М. 44 с.

19. Девицына Г.В. 2005. Структура интраорального вкусового аппарата рыб в связи со спецификой их пищевого поведения // Материалы Международной конференции «Поведение рыб ». Борок. С. 131-138.

20. Девицына Г.В., Гаджиева А.Р. 1996. Динамика морфологического развития вкусовой системы в раннем онтогенезе двух представителей осетровых Acipenser nudiventris и А. persicus. // Вопр. ихтиологии. Т. 36. № 5. С. 674-686.

21. Девицына Г.В., Кажлаев A.A. 1995. Хемосенсорные системы и их гетерохронный морфогенез у ранней молоди осетровых рыб. Биофизика . Т. 40. Вып. 1.С. 146-150.

22. Девицина Г.В., Касумян А.О. 2000. Центральное взаимодействие хемосенсорных систем у осетровых рыб // Сенсорные системы. Т. 14. № 2. С.107-117

23. Дмитриева E.H. 1957. Морфоэкологический анализ двух видов карася // Тр. Ин-та морфологии животных им. А.Н.Северцова. Т. 16.

24. Дмитриева Т.М., Москалева Т.М. 1984. Электорофизиологическая характеристика функциональной значимости необонятельной хеморецепции рыб // Тр. 1 Всес. совещания по сенсорной физиологии рыб. Мурманск. С. 49-51.

25. Домрачев П.Ф., Правдин И.Ф. 1962. Рыбы озера Ильмень и р. Волхова и их рыбохозяйственное значение // Мат. По иссл. р. Волхова и ее бассейна. Ленинград. Вып X.

26. Драгомиров Н.И. 1954. Развитие кожных рецепторов на нижней стороне головы у личинок осетра, переходящих к придонному образу жизни // Докл. АН СССР. Т. 97. № 1. с. 173-176.

27. Егоров А.Г. 1988. Рыбы водоемов юга Восточной Сибири (карпообразные , трескообразные, окунеобразные). Иркутск: Из-во Иркутского университета. 328 с.

28. Житенева Т.С. 1980. Питание леща на разных биотопах Рыбинского водохранилища // Инф. Бюллетень «Биология внутренних вод ». Ленинград: Наука. №46. С. 26-30.

29. Жуков П.И. 1965. Рыбы Белоруссии. Минск: Из-во «Наука и техника ». 415 с.

30. Задорин А.А, Зуев И.В., Вышегородцев A.A. 2004. Верховка (.Leucaspius delineatus (Heckel)) вид-вселенец в водоемах Красноярского края // Вопросы ихтиологии. № 1. С. 75-79.

31. Зверева Е.В. 1992. Вкусовая чувствительность некоторых видов лососевидных рыб и влияние на нее низкого pH воды. // Москва, МГУ , Биологичекий факультет, каф. ихтиологии. Дипломная работа. С.86.

32. Зверева О.С., Кучина Е.С., Остроумов H.A. 1953. Рыбы и рыбный промысел среднего и нижнего течения Печоры. М. : Из-во АН СССР.1. С. 131-139.

33. Ивлев B.C. 1977. Экспериментальная экология питания рыб. Киев: Наук, думка. 272 с.

34. Кассиль В.Г. 1972. Вкус // Физиология сенсорных систем. 4.2. Л.: Наука. С.562-606.

35. Кассиль В.Г. 1990. Пищевое поведение в онтогенезе. Л.: Наука. 220 с.

36. Касумян А.О. 1990. Сенсорная физиология морских рыб. Методические аспекты. Апатиты. С. 57.

37. Касумян А.О. 1991. Сенсорные механизмы, обеспечивающие надежность осуществления хемокоммуникаций у рыб // В сб.: Проблемы химической коммуникации животных. М. Наука. С. 263-270.

38. Касумян А.О. 1997. Вкусовая рецепция и пищевое поведение рыб // Вопр. ихтиологии. Т.37. №1. С. 78-93.

39. Касумян А.О. 2005. Вкусовые предпочтения и вкусовое поведение у рыб // Материалы Международной конференции «Поведение рыб ». Борок. С. 225-227.

40. Касумян А.О., Девицина Г.В. 1997. Влияние ольфакторной депривации на хемосенсорную чувствительность и состояние вкусовых рецепторов осетровых рыб // Вопр. ихтиологии. Т. 37. № 6. С. 823-835.

41. Касумян А.О., Кажлаев A.A. 1993. Поведенческие ответы ранней молоди сибирского осетра Acipenser baeri и севрюги A. stellatus (Acipenseridae) на вещества, вызывающие основные типы вкусовых ощущений // Вопр. ихтиологии. Т. 33. № 3. С. 427-443.

42. Касумян А.О., Марусов Е.А. 2002. Поведенческие ответы гольяна Phoxinus phoxinus (Cyprinidae) на химические сигналы в норме и после острой и хронической аносмии // Вопр. ихтиологии. Т. 42. № 5. С. 684-696.

43. Касумян А.О., Марусов Е.А. 2003. Поведенческие ответы интактных и хронически аносмированных обыкновенных гольянов Phoxinus phoxinus (Cyprinidae) на свободные аминокислоты // Вопр. ихтиологии. Т. 43. № 4. С.528-539.

44. Касумян А.О., Марусов Е.А. 2005. Стереотипы пищевой поведенческой реакции у рыб в норме и после острой и хронической аносмии // Материалы Международной конференции «Поведение рыб ». Борок. С. 227-232.

45. Касумян А.О., Морей А.М.Х., 1996. Вкусовая чувствительность карпа // Вопр. ихтиологии. Т. 36. № 3. С. 386-399.

46. Касумян А.О., Морей А.М.Х., 1997. Вкусовые предпочтения классических вкусовых веществ молоди белого амура Ctenopharyngodon idella (Cyprinidae, Pisces), выращенной на разных кормах // Докл. АН. Т. 357. № 2. С. 284-286.

47. Касумян А.О., Морей А.М.Х., 1998. Влияние тяжелых металлов на пищевую активность и вкусовые поведенческие ответы карпа Cyprinus carpio. 1. Медь, кадмий, цинк и свинец // Вопр. ихтиологии. Т. 38. № 3. С. 393-409.

48. Касумян А.О., Николаева Е.В. 1997. Вкусовые предпочтения гуппи Poecilia reticulata II Вопр. ихтиологии. Т. 37. № 5. С. 696-703.

49. Касумян А.О., Пащенко Н.И. 1982. Оценка роли обоняния в защитной реакции белого амура Ctenopharyngodon idella (Val.) (Cyprinidae) на феромон тревоги // Вопросы ихтиологии. Т. 22. Вып. 2. С. 303-307.

50. Касумян А.О., Пономарев В.Ю. 1986. Исследование поведения данио-рерио Brachidanio rerio Hamilton-Buchanan (Cypriniformes, Cyprinidae) при действии естественных химических пищевых сигналов // Вопр. ихтиологии. Т.26. Вып. 4. С. 665-673.

51. Касумян А.О., Сидоров С.С. 1992. Вкусовая чувствительность кеты Oncorhynchus кеta к основным типам вкусовых раздражителей и аминокислотам // Сенсорные системы. Т. 6. № 3. С. 100-103.

52. Касумян А.О., Сидоров С.С. 1993. Поведенческие ответы молоди каспийской кумжи Salmo trutta caspius Kessler на основные типы вкусовых веществ // Вестник МГУ. Сер. 16. Биология. № 2. С. 48-54.

53. Касумян А.О., Сидоров С.С. 1994а. Сравнение интраоральных и экстраоральных вкусовых ответов на свободные аминокислоты у трех видов осетровых рыб рода Acipenserll Биофизика. Т. 39, вып. 3. С. 526-529.

54. Касумян А.О., Сидоров С.С. 19946. Вкусовые свойства свободных аминокислот для молоди каспийской кумжи Salmo trutta caspius Kessler. // Вопр. ихтиологии. Т. 34. № 6. С. 831-838.

55. Касумян А.О., Сидоров С.С., 1995. Сравнительный анализ вкусовых ответов молоди кумжи Salmo trutta trutta популяций Каспийского, Балтийского и Белого морей // Докл. РАН . Т. 343. № 3. С. 417-419.

56. Касумян А.О., Сидоров С.С., 2001. Вкусовая чувствительность молоди озерного гольца Salvelinus namaycush (Salmonidaé) II Вопросы рыболовства. Приложение 1. С. 121-125.

57. Касумян А.О., Сидоров С.С. 2005а. Вкусовые предпочтения кумжи Salmo trutta трех географически изолированных популяций // Вопр. ихтиологии. Т. 45. № 1. С. 117-130.

58. Касумян А.О., Сидоров С.С. 20056. Влияние голодания на вкусовой поведенческий ответ у карпа. // Материалы Международной конференции «Поведение рыб ». Борок. С. 237-240.

59. Касумян А.О., Тауфик JI.P. 1993. Поведенческая реакция молоди осетровых рыб (Acipenseridae) на аминокислоты // Вопр. ихтиологии. Т. 33. №5. С. 691-700.

60. Касумян А.О., Морей А.М.Х., Сидоров С.С. 1993. Вкусовая чувствительность карпа Cyprynus carpió к веществам, вызывающим основные типы вкусовых ощущений // Докл. АН СССР. Т. 330. № 6. С. 792-793.

61. Касумян А.О., Сидоров С.С., Пащенко H.H. 1993. Влияние температуры воды на вкусовую чувствительность молоди севрюги Acipenser stellatus к свободным аминокислотам // Докл. АН СССР. Т.331. N2. С.248-250.

62. Касумян А.О., Тауфик Л.Р., Проценко Ю.В. 1991. Обонятельная и вкусовая чувствительность молоди осетровых рыб к аминокислотам // Биологические основы индустриального осетроводства . М.: ВНИРО. С. 37-53.

63. Касумян А.О., Кажлаев A.A., Сидоров С.С., Пащенко H.H. 1991. Обонятельная и вкусовая привлекательность компонентов искусственных кормов для молоди севрюги //Рыбное хозяйство.№ 12. С. 53-55.

64. Касумян А.О., Сидоров С.С., Пащенко Н.И., Немчинов A.B. 1992. Экстраоральная и интраоральная вкусовая чувствительность молоди русского осетра Acipenser gueldenstaedti к аминокислотам // Докл. АН СССР. Т. 322. № 1.С. 193-195.

65. Купчинский Б.С. 1987. Лещ водоемов Байкало-Ангарского бассейна. Иркутск: Из-во Иркутского университета. 144 с.

66. Кириллов Ф.Н. 1972. Рыбы Якутии. М.: Наука. 360 с.

67. Лебедев В.Д., Спановская В.Д. 1983. Семейство Карповые (Cyprynidae) IM. Жизнь животных. Т.4. Рыбы. С.228-272.

68. Линдберг Г.У. 1947. Личинкоядные рыбы Средней Азии. М.: Из-во АН СССР. С. 78-90.

69. Лупачева Л.И. 1967. Питание белого амура на ранних стадиях его развития // Рыбн. хоз-во. Киев. Вып. 3. С. 102-104.

70. Мантейфель Б.П., Гирса И.И., Лещева Т.С., Павлов Д.С. 1965. Суточные ритмы питания и двигательной активности некоторых пресноводных хищных рыб // Питание хищных рыб и их взаимоотношения с кормовыми организмами. М.: Наука. С. 3-81.

71. Михайлова Е.С., Касумян А.О. 2005. Сравнение вкусового поведенческого ответа у трехиглой колюшки из нескольких географически изолированных популяций // Материалы Международной конференции «Поведение рыб ». Борок. С. 336-340.

72. Морей А.М.Х., 1995. Вкусовая чувствительность карпа и ее изменение при действии тяжелых металлов / М.: МГУ, диссерт. на соиск. уч. степ, к.б.н., 172 с.

73. Никольский Г.В. 1956. Рыбы бассейна Амура. Итоги Амурской ихтиологической экспедиции 1945-1949 гг. М.: Из-во АН СССР. 551 с

74. Никольский Г.В. 1971. Частная ихтиология. М.: Высшая школа. 471 с.

75. Никольский Г.В. 1974. Экология рыб. М.: Высшая школа. 174 с.

76. Никольский Г.В., Громичева H.A., Морозова Г.И., Пикулева В.А. 1947. Рыбы бассейна верхней Печоры // Рыбы бассейна Верхней Печоры. М.: Из-во

77. МОИП . Материалы к познанию фауны и флоры СССР. Новая серия. Отдел зоологический . Вып. 6 (XXI). С. 5-209.

78. Никольский П.Д., Жданова H.H. 1959. Влияние сроков заливания рыбхозов на выживание молоди леща // Рыбное хозяйство. № 2. С. 15-18.

79. Николаева Е.В., Касумян А.О., 2000. Сравнительный анализ вкусовых предпочтений и поведенческого ответа на вкусовые стимулы у самок и самцов гуппи, Poecilia reticulata И Вопр. ихтиологии. Т. 40. № 4. С. 560-565.

80. Николаева Е.В., Касумян А.О., 2001. Вкусовые предпочтения молоди полярной камбалы Liopsetta gîacialis и полосатой зубатки Anarhichas lupus II Вопросы рыболовства. Приложение 1. С. 197-201.

81. Никонов Г.И. 1998. «Живое серебро » Обь-Иртыша. Тюмень: Из-во «ОФТ Дизайн ». С. 98-180.

82. Осинов А.Г. 1984. К вопросу о происхождении современного ареала кумжи Salmo trutta L. (Salmonidae): Данные по биохимическим маркерам генов // Вопр. ихтиологии. Т. 24. Вып. 1. С. 11-24.

83. Осинов А.Г., Берначе J1. 1996. "Атлантическая" и "дунайская" филогенетические группы кумжи Salmo trutta complex: генетическая дивергенция, эволюция, охрана // Вопр. ихтиологии. Т. 36. Вып 6. С. 762-786.

84. Павлов Д.С., Касумян А.О. 1990. Сенсорные основы пищевого поведения рыб // Вопр. ихтиологии. Т. 30. Вып. 5. С. 720-732.

85. Павлов Д.С., Касумян А.О. 1998. Структура пищевого поведения рыб // Вопр. ихтиологии. Т. 38. № 1. С. 123-136.

86. Пащенко Н.И., Касумян А.О. 1984. Дегенеративные и восстановительные процессы в обонятельной выстилке белого амура Ctenopharyngodon idella (Val.) (Cyprinidae) после действия на нее детергента тритон-Х-100 //Вопр. ихтиологии. Т. 24. Вып. 1. С. 128-137.

87. Певзнер P.A. 1978. Электронно-микроскопическое исследование вкусовых рецепторов европейского угря Anguilla anguilla II Цитология . T. 20. № 10. С. 1112-1118.

88. Певзнер P.A. 1980. Некоторые эволюционные особенности организации органа вкуса рыб // Сенсорные системы. Обоняние и вкус. JI.: Наука. С. 82-93.

89. Певзнер P.A. 1981а. Ультраструктурная организация вкусовых рецепторов костно-хрящевых рыб. I. Взрослые осетровые рыбы // Цитология. Т. 23. № 7. С. 760-766.

90. Певзнер P.A. 19816. Ультраструктурная организация вкусовых рецепторов костно-хрящевых рыб. И. Личинки , переходящие на активное питание // Цитология. Т. 23. № 8. С. 867-873.

91. Певзнер P.A. 1985. Ультраструктурная организация вкусовых рецепторов костно-хрящевых рыб. III. Личинки в период желточного питания // Цитология. Т. 27. № 11. С. 1240-1246.

92. Поддубный А.Г. 1966. Об адаптивном ответе популяции плотвы на изменение условий обитания // Тр. Ин-та биол. Внутр.вод. АН СССР. Вып. 10 (13).

93. Правдин И.Ф. 1966. Руководство по изучению рыб. М.: Из-во «Пищевая промышленность ». 375 с.

94. Пучков Н.В. 1954. Физиология рыб // Пищепромиздат. М. 371 с.

95. Родионова Л.А. 1969. Питание плотвы Камского водохранилища // Ученые записки Пермского ун-та. «Материалы научно-производственного совещания о состоянии сырьевой базы водоемов Пермской области и их рыбохозяйственного использования». Пермь.

96. Руководство по биотехнике разведения и выращивания дальневосточных растительноядных рыб. 2000. Под ред. Виноградова В.К. ВНИИПРХ, 211 с.

97. Спановская В.Д., Григораш В.А. 1961. Суточный ритм питания некоторых карповых рыб // Вопр. ихтиологи . Т. 1, вып. 2 (19). С. 297-306.

98. Степанова H.A. 1953. Рыбохозяйственное использование Катта-Курганского водохранилища // Изв. АН УзССР. Вып. 5.

99. Стуге Т.С. 1973. Экспериментальное исследование питания молоди белого амура // АН Казах. ССР. Экология гидробионтов водоемов Казахстана. Алма-Ата. 136-142.

100. Суетов C.B. 1939. К познанию рыбной продуктивности водоемов. Сообщение VIII. Значение иловой толщи в использовании естественного корма рыбами // Тр. Лимнол. ст. в Косине. Вып. 22. С. 241-249.

101. Федоров A.B. 1960. Ихтиофауна бассейна Дона в Воронежской области // Рыбы и рыбное хозяйство Воронежской области (Итоги работ Комплексной рыбохозяйственной экспедиции 1953-1957 гг.). Воронеж: Из-во Воронежского университета. С. 149-249.

102. Флерова Г.И., Гдовский П.А. 1976. Скорость распространения возбуждения по волокнам обонятельного нерва и вызванные ответы обонятельного мозга рыб в условиях изменяющейся температуры // Вопросы ихтиологии. Т. 16. Вып. 1 (96). С. 119-125.

103. Фокина Е.С., Касумян А.О. 2003. Сравнение вкусовых предпочтений у разных поколений популяции девятииглой колюшки Pungitius pungitius (Gasterosteiformes) // Доклады Академии Наук. Т.389. №4. С.570-573.

104. Фортунатова K.P., Попова O.A. 1973. Питание и пищевые взаимоотношения хищных рыб в дельте Волги. М.: Наука. 298 с.

105. Харборн Д. 1985. Введение в экологическую биохимию. М.: Мир.289 с.

106. Харитонова H.H. 1963. Питание и пищевые взаимоотношения карпа и серебряного карася в прудах // Укр. НИИ Рыб. Хоз-ва. «Повышение рыбопродуктивности прудов». Научн. Тр. T. XV. С. 7-25.

107. Хиатт К.Д. 1983. Стратегия питания // Биоэнергетика и рост рыб. (Под ред. У.Хоара и др.). М.: Легкая промышленность. С. 70-112.

108. Черемисова К.А. 1958. Питание сига и серебряного карася в новых условиях обитания // Тр. Белорусского ин-та гидробиологии . Т. 11.

109. Щербина Г.Х. 1987. О питании линя на серых илах оз. Вишнетынецкого // Инф. бюллетень «Биология внутренних вод ». № 75. С. 43-47.

110. Шапошникова Г.Х. 1964. Биология и распределение рыб в реках Уральского типа. М.: Наука. 349 с.

111. Шивокене Я.С. 1989. Симбионтное пищеварение у гидробионтов и насекомых . Вильнюс: Мокслас. 223 с.

112. Шорыгин А.А. 1952. Питание и пищевые взаимоотношения рыб Каспийского моря. М.: Пищепромиздат. 267 с.

113. Aburto-Oropeza О., Sala Е., Sanchez-Ortiz С. 2000. Feeding behavior, habitat use, and abudance of the angelfish Holacanthus passer (Pomacanthidae) in the southern Sea of Cortes // Environmental Biology of Fishes. V. 57. P. 435-442.

114. Adamek Z., Fasaic K., Debeljak L. 1990. Lower temperature limits of plant food intake in young grass carp (Ctenopharyngodon idella Val.) // Ichthyologia. №22. P. 1-8.

115. Adams M.A., Johnsen P.B., Hong-Qi Z. 1988. Chemical enhancement of feeding for the herbivorous fish Tilapia zillii II Aquaculture. V. 72. P. 95-107.

116. Adron J.W., Mackie A.M. 1978. Studies on the chemical nature of feeding stimulants for rainbow trout, Salmo gairdneri Richardson // Journal of Fish Biology. V. 12. P. 303-310.

117. Appelbaum S. 1980. Versuche zur Geschmacksperzeption einiger imlarvalen undadulten Stadium//Arch. Fischereiwiss. Bd.31 .№ 2. P. 105-114.

118. Atema J. 1971. Structures and functions of the sense of taste inthe catfish (Ictalurus natalis) // Brain, Behaviour and Evolution. V. 4. P. 273-294.

119. Atema J. 1980. Chemical senses, chemical signals and feeding behaviour in fishes // Fish behaviour and its use in the capture and culture of fishes. Manila. P. 57-101.

120. Baird R.C. 1965. Ecological implications of the behavior of the sexually dimorphic goby Microgobius gulosus (Girard) // Publ. Inst. Marine Sci. Texas. V.10.P. 1-8.

121. Barlow L.A., Northcutt R.G. 1995. Embryonic origin of amphibian taste buds // Developmental Biology. V. 169. P. 273-285.

122. Bardach J.E., Winn H.E., Menzel D.W. 1959. The pole of the senses in the feeding of the nocturnal reeef predators Gymnothorax moringa and G.vicinus // Copeia. № 2. P. 133-139.

123. Bardach J.E., Todd J.H., Crickmer R.K. 1967. Orientation by taste in fish of genus Ictalurus II Science. № 155. P. 276-1278.

124. Beidler L.M. 1967. Anion influences on taste receptor response // Olfaction and Taste. II (Ed. T. Hayashi). Oxford: Pergamon Press. P. 509-535.

125. Brown S.B., Evans R.E., Thompson B.E., Hara T.J. 1982. Chemoreception and aquatic pollutants // Chemoreception in Fishes (Ed. T.J. Hara). Elsevier Scientific Publishing Co., Amsterdam. P. 363-393.

126. Bryan J.E., Larkin P.A. 1972. Food specialization by individual trout // Journal of the Fisheries Research Board of Canada. V. 29. P. 1615-1624.

127. Callan W.T., Sanderson S.L. 2003. Feeding mechanisms in carp: crossflow filtration, palatal protrusions and flow reversals // J. Exp. Biol. V. 206. P. 883-892.

128. Caprio J. 1975. High sensitivity of catfish taste receptors to amino acids // J. Comp. Biochem. Physiol. V. 52 A. P. 217-251.

129. Caprio J. 1978. Olfaction and taste in the channel catfish: an electrophysiological study of the responses to amino acids and derivates // Journal of Comparative Physiology. V. 123. P. 357-371.

130. Dabrowski K., Rusiecki M. 1983. Content of total and free amino acids inzooplanktonic food of fish larvae // Aquaculture. V. 30. № 1-4. P. 31-42.

131. De la Noue J., Choubert G. 1985. Apparent digestibility of invertebrate biomasses by rainbow trout // Aquaculture. V. 50. P. 103-112.

132. Devitsina G.V. 2003. On the interaction of chemosensory systems in fish // J. of Ichthyology, V.43. Suppl. 2. "Behavior, distribution and migration of fishes". P.214-227.

133. Doving K.B. 1986. Functional properties of the fish olfactory system. // Progress in Sensory Physiology. V. 6. Berlin. P. 39-104.

134. Doving K.B., Seslet R., Tommesen G. 1980. Olfactory sensitivity to bile acids insalmonid fishes// Acta Physiol. Scand. V. 108. P. 123-131.

135. Dubois-Dauphin M., Doving K.B., Holley A. 1980. Topographical relation between the olfactory bulb and the olfactory tract in tench (Tinea tinea L) // Chemical Senses. V. 5. № 2. P. 159-169.

136. Dussault G.V., Kramer D.L. 1981. Food and feeding behavior of the guppy Poecilia reticulata (Pisces:Poeciliidae) // Canadian Journal of Zoology. V. 59. P. 684-701.

137. Farr J.A., Herrnkind W.F. 1974. A quantitative analysis of social interaction of the guppy, Poecilia reticulate (Pisces: Poeciliidae) as function of population density // Animal Behaviour. № 22. P. 582-591.

138. Finger T.E. 1976. Gustatory pathways in the bullhead catfish. Part I. Connections of the anterior ganglion // Journal of Comparative Neurology. V. 165. P. 513-526.

139. Finger T.E., Morita Y. 1985. Two gustatory systems: facial and vagal gustatory nuclei have different brainstem connections // Science. V. 227. P. 776778.

140. Finger T.E., Drake S.K., Kotrschal K., Womble M., Dockstader K.C. 1991. Postlarval growth of the peripheral gustatory system in the channel catfish, Ictalurus punctatus II Journal of Comparative Neurology. № 314. P. 55-66.

141. Frank M.E., Hettinger T.P., Mott A.E. 1992. The sense of taste:neurobiology,aging, and medication effects // Critical Reviews in Oral Biology and Medicine. V. 3. № 4. P. 371-393.

142. Frankiewicz P, Zalewski M., Biro P, Tatrai I, Przybylki M. 1991. The food of fish from streams of the northen part of the catchment area of Lake Balaton (Hungary) // Acta Hydrobiol, V. 33. № 1-2. P. 149-160.

143. Gerhart D.J, Bondura M.E, Commito J.A. 1991. Inhibition of sunfish feeding by defensive steroids from aquatic beetles: structure-activity relationships // Journal of Chemical Ecology. V. 17. P. 1363-1370.

144. Goh Y, Tamura T. 1980a. Effects of amino acids on the feeding behaviour in red sea bream // Comparative Biochemistry and Physiology. 66C. P. 225-229.

145. Goh Y, Tamura T. 1980b. Olfactory and gustatory responses to amino acids in two marine teleosts red sea bream and mullet // Comparative Biochemistry and Physiology. 66C. P. 217-224.

146. Gomahr A, Palzenberger M, Kotrschal K. 1992. Density and distribution of external taste buds in cyprinids // Environmen. Biol. Fish. V. 33. № 12. P. 125-134.

147. Halpern B.P. 1986. Constraints imposed on taste physiology by human taste reaction time data // Neurosci. Behav. Res. V. 10. P. 135-151.

148. Hara T.J, Sveinsson T, Evans R.E, Klaprat D.A. 1993. Morphological and functional characteristics of the olfactory and gustatory organs of three Salvelinus species // Can. J. Zool. V. 71. № 2. P. 414-423.

149. Hara T.J., Carolsfeld J., Kitamura S. 1999. The variability of the gustatory sensibility in salmonids, with special reference to strain differences in rainbow trout, Oncorhynchus mykiss // Can. J. Fish. Aquat. Sci. V. 56. P. 13-24.

150. Hart P.J.B., Gill A.B. 1992. Constraints on prey size selection by the threespined stickleback: energy requirements and the capacity and fullness of the gut // J. Fish Biol. V. 40. P. 205-218.

151. Heinsbroek L.T.N., Kreuger J.G. 1992. Feeding and growth of glass eels, Anguilla anguilla L. The effect of feeding stimulants on feed intake, energy metabolism and growth // Aquaculture and Fisheries Management. № 23. P. 327336.

152. Hellstrom T., Doving K.B. 1986. Chemoreception of taurocholate in anosmic and sham-operated cod, Gadus morhua // Behavioural Brain Res. V. 21. P. 155-162.

153. Herrick C.J. 1901. The cranial nerves and cutaneous sense organs of the North American silurid fishes // Journal of Comparative Neurology and Physiology. V. 11. P. 177-249.

154. Hidaka I. 1982. Taste receptor stimulation and feeding behavior in the puffer // Chemoreception in Fishes. (Ed. T.J. Hara). Elsevier Scientific Publishing Co., Amsterdam. P. 243-257.

155. Hidaka I., Ishida Y. 1985. Gustatoiy response in the Shimaisaki (tigerfish) Therapon oxyrhynchus II Bulletin of the Japanese Society of Scientific Fisheries. V. 51. P. 387-391.

156. Hidaka I., Ohsugi T., Kubomatsu T. 1978. Taste receptor stimulation and feeding behaviour in the puffer Fugu pardalis. Part I. Effect of single chemicals // Chemical Sense and Flavor. № 3. P. 341-354.

157. Holm J.C., Walther B. 1988. Free amino acids in live freshwater zooplankton and dry feed: possible importance for first feeding in Atlantic salmon (Salmo salar) //Aquakulture. № 71. P. 341-354.

158. Horppila J. 1994. The diet and growth of roach (Rutilus rutilus (L.)) in Lake Vesijarvi and possible changes in the course of biomanipulation // Hydrobiologia. V. 294. P. 35-41.

159. Horppila J. 1999. Diel changes in diet composition of an omnivorous cyprinid a possible source of error in estimating food consumption // Hydrobiologia. V. 294. P. 35-41.

160. Horppila J., Ruuhijarvi J., Rask M., Karppinen C., Nyberg K., Olin M. 2000. Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of the large lake // Journal of Fish Biology. V. 56. P. 51-72.

161. Jakubowski M. 1983. New details of the ultrastructure (TEM, SEM) of taste buds in fishes // Zeitschrift fur Mikroskopisch-Anatomische Forschung. V. 97. P. 849-862.

162. Jakubowski M., Whitear M. 1990. Comparative morphology and cytology of taste buds in teleosts // Z. mikrosk.-anat. Forsch. V. 104. № 4. P. 529-560.

163. Jones K.A. 1989. The palatability of amino acids and related compounds to rainbow trout, Salmo gairdneri Richardson // J.Fish Biol. V. 34. № LP. 149-160.

164. Kaku T., Tsumagari M., Kiyohara S., Yamashita. 1980. Gustatory responses in the minnow, Pseudorasbora parva I I Physiology and Behavior. V. 25. P. 99-105.

165. Kamstra A., Heinsbroek L.T.N. 1991. Effects of attractants on start of feeding of glass eel, Anguilla anguilla L. // Aquaculture and Fisheries Management. № 22. P. 47-56.

166. Kanwal J.S., Caprio J. 1983. An elektrophysiological investigation of the oropharyngeal (IX-X) taste system in the channel catfish Ictalurus punctatus II J. Comp. Physiol. A. V. 150. P. 345-357.

167. Kanwal J.S., Caprio J. 1988. Overlapping taste and tactile maps of the oropharynx in the vagal lobe of the channel catfish Ictalurus punctatus // J. Neurobiol. V. 19. № 3. P. 211-222.

168. Kanwal J.S., Finger T.E. 1992. Central representation and projections of gustatory systems // Fish Chemoreception (Ed. T.J.Hara). Chapman and Hall. London. P. 79-102.

169. Kapoor B.G., Evans H.E., Pevzner R.A. 1975. The gustatory system in fish // Advanches marine biology. V. 13. P. 53-108.

170. Kasumyan A.O., 1999. Olfaction and taste senses in sturgeon behaviour. // J. Appl. Ichthyol. V. 15. P. 228-232.

171. Kasumyan A.O. 2002. Sturgeon food searching behavior evoked by chemical stimuli: a reliable sensory mechanism // J. Appl. Ichthyol. V. 18. P. 685-690.

172. Kasumyan A.O. 2004. The olfactory system in fish: Structure, function and role in behavior//J. Ichthyol. V. 44. Suppl. 2. P. 180-223.

173. Kasumyan A.O., Doving K.B. 2003. Taste preferences in fish // Fish and Fisheries. V. 4. P. 289-347.

174. Kasumyan A.O., Nikolaeva E.V. 2002. Comparative analysis of taste preferences in fishes with different ecology and feeding // Journal of Ichthyology. Vol. 41. Suppl. 2. P. 203-214.

175. Kasumyan A.O., Sidorov S.S., 1995. The Palatability of Free Amino Acidsand Classical Taste Substances in Frolich Char, Salvelinus alpinus erhythrinus (Georgi). // Nordic J. Freshw. Res. № 71. P. 320-323.

176. Kasumyan A.O., Sidorov S.S. 2002. Individual variability of taste preferences in the minnow Phoxinus phoxinus II Journal of Ichthyology. Vol. 42. Suppl. 2. P. 241-254.

177. Kasumyan A.O., Marusov E.A., Sidorov S.S., 2003. Feeding behavior of the ruffe Gymnocephalus cernuus triggered by olfactory and gustatory stimulants. Journal of Ichthyology. V. 43. Suppl. 2. P. 247-254.

178. Kennedy M., Fitzmaurice P. 1970. Biology of the tench, Tinea tinea (L.), in an Irish waters // Proc. Royal Irish Acad. V. 69. P .31-82.

179. Kiyohara S., Yamashita S., Harada S. 1981. High sensitivity of minnow gustatory receptors to amino acids // Physiol, and Behav. V. 26. № 6. P. 1103- 1108.

180. Kiyohara S., Shiratani T., Yamashita S.1985. Peripheral and central distribution of major branches of the facial taste nerve in the carp // Brain Res. V. 325. P. 57-69.

181. Klaprat D.A., Evans R.E., Hara T.J. 1992. Environmental contaminants and chemoreception in fishes // In: Fish chemoreception (ed. T.J.Hara). Chapman and Hall. London. P. 321-341.

182. Kleerekoper H. 1969. Olfaction in fishes. Bloomington. Indiana Univ. Press.

183. Konishi J. Zotterman Y. 1961. Taste functions in the carp: an electrophysiological study on gustatory fibres // Acta Physiologica Scandinavica. V. 52. P. 150-161.

184. Kotrschal K., Peters R.C., Doving K.B. 1996. Chemosensory and tactile nerve responses from the anterior dorsal fin of a rockling, Gaidropsarus vulgaris (Gadidae, Teleostei) // Prim.Sensory Neuron. V. 1. № 4. P. 297-309.

185. Mackie A.M. 1982. Identification of the gustatory feeding stimulants // Chemoreception in fishes. (Ed. T.J. Hara). Elesevier Scientific Publ. Comp. Amsterdam. P. 275-291.

186. Mackie A.M., Adron J.W. 1978. Identification of inosine and inosine-5"-monophosphate as the gustatory feeding stimulants for the turbot, Scophthalmus maximus // Comparative Biochemistry and Physiology. 60 A. P. 79-88.

187. Mackie A.M., Mitchell A.I. 1983. Studies on the chemical nature of feeding stimulants for the juvenile European eel, Anguilla anguilla (L) // Journal of Fish Biology. V. 22. P 425-430.

189. Marui T., Caprio J. 1992. Teleost gustation // In: Fish Chemoreception (Ed. T.J.Hara). Chapman and Hall. London. P. 171-198.

190. Marui T., Evans R.E., Zielinski B., Hara T.J. 1983. Gustatory responses of the rainbow trout (Salmo gairdneri) palate to amino acids and derivatives. // J. Comp. Physiol. V. 153A. P. 423-433.

191. Mearns K.J., Ellingsen O.F., Doving K.B., Helmer S. 1987. Feeding behaviour in adult rainbow trout and atlantic salmon parr, elicited by chemical fractions and mixtures of compounds identifited in shrimp extract // Aquaculture. № 64. P. 47-63.

192. Mistretta C.M. 1991. Developmental neurobiology of the taste system // In: Smell and taste in health and disease. New-York: Raven Press. P. 35-64.

193. Nikolaeva E.V., Kasumyan A.O. 2000. Comparative analysis of the taste preferences and behavioralresponses to gustatory stimuli in females and males of the guppy, Poecilia reticulata II Journal of Ichthyology. V. 40. P. 479-484.

194. Ohsugi T., Hidaka I., Ikeda M. 1978. Taste receptor stimulation and feeding behaviour in the puffer, Fugu pardallis. Part II. Effect produced by mixtures of constituents of clam extract // Chemical Senses and Flavor. V. 3. P. 355-368.

195. O"Maoileidigh N., Bracken J.J. 1989. Biology of the tench, Tinea tinea (L.), in an Irish lake // Aquaculture and Fisheries Management. V. 20. № 2. P. 199-209.

196. Osse J.W.M., Sibbing F.A., Van Den Boogaart J.G.M. 1997. Intra-oral food manipulation of carp and pther cyprinids: adaptationa and limitations // Acta Physiol. Scand. V. 161. Suppl. 638. P. 47-57.

197. Perkar C., Krupauer V. 1968. Food relationships between two-year-old carp and tench in mixed multispecies stock // Prace VURN Vodn., N8, P.29-54.

198. Ramirez I., Sprott R.L. 1978. Genetic mechanisms of drinking and feeding // Neurosci. Biobehav. Rev. V. 2. No. 1. P. 15-26.

199. Reid M., Hammersley R. 1996. Effects of carbonated beverages on eating behavior over seven days // Proc. Nutr. Soc. V. 55. No. 3. P. 251.

200. Reiter R., Lukowicz M.v., Arnold R., le Deit H., Aquaron R., Schmidter A., Kuznik M., Burkard S., Rannz D., Rambeck W.A. 2002. Algen im Fischfutter -eine Möglichkeit der Jochanreicherung im Süßwasserfisch // Fischer und Teichwirt. V. 53. №6. P. 211-212

201. Ringler N.H . 1985. Individual and temporal variation in prey switching by brown trout Salmo trutta // Copea. V. 4. P. 918-926.

202. Reutter K. 1971. Die Geschmacksknospen des Zwergwelses Amiurus nebulosus, Morphologische und histochemixche Untersuchungen // Z. mikr. Anat. Bd. 120. S. 280-308.

203. Reutter K. 1986. Chemoreceptors // In: Biology of the integument. V.II. (Ed. J. Bereiter-Hahn, A.G. Matoltsy and K.S. Richards). Berlin. Springer. P. 586-604.

204. Reutter K. 1992. Structure of the peripheral gustatory organ, pepresented by the siluroid fish Plotosus lineatus (Thunberg) // Fish Chemoreception (Ed. T.J.Hara). Chapman and Hall. London. P. 60-78.

205. Reutter K., Witt M. 1993. Morphology of vertebrate taste organs and their nerve supply. // In: Mechanisms of Taste Transduction (Ed. S.A. Simon and S.D. Roper). CRC Press. Boca Raton. P. 29-82.

206. Sakashita H. 1992. Sexual dimorphism and food habits of the clingfish, Diademichthys lineatus, and its dependence on host sea urchin // Environm. Biol. Fish. V. 34. P. 95-101.

207. Schulte B.A., Bakus G.J. 1992. Predation deterrence in marine sponges: laboratory versus field studies // Bull. Marine Sci. V. 50. № 1. P. 205-211.

208. Selset R., Doving K.B. 1980. Behaviour of mature anadromous char (Salmo alpinus L.) towards odorants produced by smolts of their own population // Acta Physiol. Scand. V. 108. P. 113-122.

209. Sibbing F.A. 1988. Specializations and limitations in the utilization of food resources by the carp, Cyprinus carpio: a study of oral food processing // Environmental Biology of Fishes. № 22. P. 161-178.

210. Sibbing F.A., Osse J.W.M., Terlouw A. 1986. Food handling in the carp (Cyprinus carpio): its movement patterns, mechanisms and limitations // J. Zool. Soc. of London. V. 210 (A). № 2. P. 161-203.

211. Sinclair J.D., Kampov-Polevoy A., Stewart R., Li T.-K. 1992. Taste preferences in rat lines selected for low and high alcohol con sumption // Alcohol. V. 9. №2. P. 155-160.

212. Sukop I., Adamek Z. 1995. Food biology of one-, two- and three-year-old tench in polycultures with carp and herbivorous fish // Pol. Arch. Hydrobiol. V. 42. № 1-2. P. 9-18.

213. Sutterlin A.M. 1975. Chemical attraction of some marine fish in their natural habitat // Journal of the Fisheries Research Board of Canada. № 32. P. 729-738.

214. Sutterlin A.M., Sutterlin N. 1970. Taste responses in Arlantic salmon (Salmo salar) parr // Journal of the Fisheries Research Board of Canada. № 27. P. 1927-1942.

215. Takeda M., Takii K. 1992. Gustation and nutrition in fishes: application to aquaculture // In: Fish Chemoreception (Ed. T.J. Hara). Chapman and Hall. London. P.271-287.

216. Takeda M., Takii K., Matsui K. 1984. Identification of feeding stimulants for juvenile eel // Bulletin of the Japanese Society of Scientific Fisheries. № 50. P. 1039-1043.

217. Takii K., Shimeno S., Takeda M., Kamekawa S. 1986. The effect of feeding stimulants in diet on digestive anzyme activities of eel // Bulletin of the Japanese Society of Scientific Fisheries. № 52. P. 1449-1454.

218. Valentincic T., Caprio J. 1994. Consummatory feeding behaviour to amino acids in intact and anosmic channel catfish Ictalurus punctatus // Physiol. Behav. V. 55. №5. P. 857-863.

219. Van Damme R., Bauwens D., Vanderstighelen D., Verheyen R.F. 1990. Responses of the lizard Lecerta vivípara to predator chemical cues: the effects of temperature // Animal Behaviour. V. 40. P. 298-305.

220. Weatherley N.S. 1987. The diet and growth of 0-group dace, Leuciscus leuciscus (L.), and roach, Rutilus rutilus (L.), in a lowland river // J. Fish Biol. V. 30. P. 237-247.

221. Weber E.H. 1827. Über das Geschmacksorgane des Karpfen und den Ursprung seiner Nerven. Archiv für Anatomie und Physiologie. P. 309-315.

222. Welsch IL, Storch V. 1969. Die Feinstruktur der Geschmacksknospen von Welsen Ciarias batrachus (L.) and Kryptopterus bicirrhis (Cuvier et Valenciennes). // Zeitschrift für Zellforschung und Mikroscopische Anatomie. V. 100. P. 552-559.

223. Witt M., Reutter K. 1990. Electron microscopic demonstration of lectin binding sites in the taste buds of the European catfish Silurus glanis (Teleostei) // Histochemistry. V.94. P. 617-628.

224. White A.W., Fukuhara O., Anraku M.1989. Mortality of fish larvae from eating toxic dinoflagellate toxins // Red tides: biology, environmental science and toxicology. Proc. 1st Inter. Symp. Red Tides. New York. P. 395-398.

225. Whitear M. 1971 Cell specialization and sensory function in fish epidermis // Journal of Zoology. London. V. 163. P. 237-264.

226. Whitear M. 1992. Solitary chemosensory cells // In: Fish Chemoreception (Ed. T.J. Hara). Chapman and Hall. London. P. 103-125.

227. Wootton R.J. 1998. Ecology of Teleost Fishes // In: Kluwer Academic Publishers. Dordrecht.

228. Wunder W. 1957. Die Sinnesorgane der Fische // Allgem. Fischereizeitung. V. 82. P. 1-24.

229. Yamamoto T., Kawamura Y. 1981. Gustatory reaction time in human adults // Physiol. Behav. V. 26. P. 715-719.

230. Yoshii K., Kamo N., Kurihara K., Kabataki Y. 1979. Gustatory responses of eel palatine receptors to amino acids and carboxylic acids // Journal of General Physiology. V. 74. P. 301-317.

231. Zuwala K., Jakubowski M. 1993. Light and electron (SEM, TEM) microscopy of taste buds in the tench Tinca tinea (Pisces: Cyprinidae) II Acta Zoologica. Stockholm. V. 74. № 4. P. 277-282.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.